/* * Copyright (c) 2012-2013, 2015 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * Copyright (c) 2010 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor * Dave Greene */ /** * @file * Miss Status and Handling Register (MSHR) definitions. */ #include #include #include #include #include "base/misc.hh" #include "base/types.hh" #include "debug/Cache.hh" #include "mem/cache/cache.hh" #include "mem/cache/mshr.hh" #include "sim/core.hh" using namespace std; MSHR::MSHR() : readyTime(0), _isUncacheable(false), downstreamPending(false), pendingDirty(false), postInvalidate(false), postDowngrade(false), queue(NULL), order(0), blkAddr(0), blkSize(0), isSecure(false), inService(false), isForward(false), threadNum(InvalidThreadID), data(NULL) { } MSHR::TargetList::TargetList() : needsExclusive(false), hasUpgrade(false) {} inline void MSHR::TargetList::add(PacketPtr pkt, Tick readyTime, Counter order, Target::Source source, bool markPending) { if (source != Target::FromSnoop) { if (pkt->needsExclusive()) { needsExclusive = true; } // StoreCondReq is effectively an upgrade if it's in an MSHR // since it would have been failed already if we didn't have a // read-only copy if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) { hasUpgrade = true; } } if (markPending) { // Iterate over the SenderState stack and see if we find // an MSHR entry. If we do, set the downstreamPending // flag. Otherwise, do nothing. MSHR *mshr = pkt->findNextSenderState(); if (mshr != NULL) { assert(!mshr->downstreamPending); mshr->downstreamPending = true; } else { // No need to clear downstreamPending later markPending = false; } } emplace_back(pkt, readyTime, order, source, markPending); } static void replaceUpgrade(PacketPtr pkt) { if (pkt->cmd == MemCmd::UpgradeReq) { pkt->cmd = MemCmd::ReadExReq; DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n"); } else if (pkt->cmd == MemCmd::SCUpgradeReq) { pkt->cmd = MemCmd::SCUpgradeFailReq; DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n"); } else if (pkt->cmd == MemCmd::StoreCondReq) { pkt->cmd = MemCmd::StoreCondFailReq; DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n"); } } void MSHR::TargetList::replaceUpgrades() { if (!hasUpgrade) return; for (auto& t : *this) { replaceUpgrade(t.pkt); } hasUpgrade = false; } void MSHR::TargetList::clearDownstreamPending() { for (auto& t : *this) { if (t.markedPending) { // Iterate over the SenderState stack and see if we find // an MSHR entry. If we find one, clear the // downstreamPending flag by calling // clearDownstreamPending(). This recursively clears the // downstreamPending flag in all caches this packet has // passed through. MSHR *mshr = t.pkt->findNextSenderState(); if (mshr != NULL) { mshr->clearDownstreamPending(); } } } } bool MSHR::TargetList::checkFunctional(PacketPtr pkt) { for (auto& t : *this) { if (pkt->checkFunctional(t.pkt)) { return true; } } return false; } void MSHR::TargetList::print(std::ostream &os, int verbosity, const std::string &prefix) const { for (auto& t : *this) { const char *s; switch (t.source) { case Target::FromCPU: s = "FromCPU"; break; case Target::FromSnoop: s = "FromSnoop"; break; case Target::FromPrefetcher: s = "FromPrefetcher"; break; default: s = ""; break; } ccprintf(os, "%s%s: ", prefix, s); t.pkt->print(os, verbosity, ""); } } void MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target, Tick when_ready, Counter _order) { blkAddr = blk_addr; blkSize = blk_size; isSecure = target->isSecure(); readyTime = when_ready; order = _order; assert(target); isForward = false; _isUncacheable = target->req->isUncacheable(); inService = false; downstreamPending = false; threadNum = 0; assert(targets.isReset()); // Don't know of a case where we would allocate a new MSHR for a // snoop (mem-side request), so set source according to request here Target::Source source = (target->cmd == MemCmd::HardPFReq) ? Target::FromPrefetcher : Target::FromCPU; targets.add(target, when_ready, _order, source, true); assert(deferredTargets.isReset()); data = NULL; } void MSHR::clearDownstreamPending() { assert(downstreamPending); downstreamPending = false; // recursively clear flag on any MSHRs we will be forwarding // responses to targets.clearDownstreamPending(); } bool MSHR::markInService(bool pending_dirty_resp) { assert(!inService); if (isForwardNoResponse()) { // we just forwarded the request packet & don't expect a // response, so get rid of it assert(getNumTargets() == 1); popTarget(); return true; } inService = true; pendingDirty = targets.needsExclusive || pending_dirty_resp; postInvalidate = postDowngrade = false; if (!downstreamPending) { // let upstream caches know that the request has made it to a // level where it's going to get a response targets.clearDownstreamPending(); } return false; } void MSHR::deallocate() { assert(targets.empty()); targets.resetFlags(); assert(deferredTargets.isReset()); inService = false; } /* * Adds a target to an MSHR */ void MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order) { // assume we'd never issue a prefetch when we've got an // outstanding miss assert(pkt->cmd != MemCmd::HardPFReq); // uncacheable accesses always allocate a new MSHR, and cacheable // accesses ignore any uncacheable MSHRs, thus we should never // have targets addded if originally allocated uncacheable assert(!_isUncacheable); // if there's a request already in service for this MSHR, we will // have to defer the new target until after the response if any of // the following are true: // - there are other targets already deferred // - there's a pending invalidate to be applied after the response // comes back (but before this target is processed) // - this target requires an exclusive block and either we're not // getting an exclusive block back or we have already snooped // another read request that will downgrade our exclusive block // to shared if (inService && (!deferredTargets.empty() || hasPostInvalidate() || (pkt->needsExclusive() && (!isPendingDirty() || hasPostDowngrade() || isForward)))) { // need to put on deferred list if (hasPostInvalidate()) replaceUpgrade(pkt); deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true); } else { // No request outstanding, or still OK to append to // outstanding request: append to regular target list. Only // mark pending if current request hasn't been issued yet // (isn't in service). targets.add(pkt, whenReady, _order, Target::FromCPU, !inService); } } bool MSHR::handleSnoop(PacketPtr pkt, Counter _order) { DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); if (!inService || (pkt->isExpressSnoop() && downstreamPending)) { // Request has not been issued yet, or it's been issued // locally but is buffered unissued at some downstream cache // which is forwarding us this snoop. Either way, the packet // we're snooping logically precedes this MSHR's request, so // the snoop has no impact on the MSHR, but must be processed // in the standard way by the cache. The only exception is // that if we're an L2+ cache buffering an UpgradeReq from a // higher-level cache, and the snoop is invalidating, then our // buffered upgrades must be converted to read exclusives, // since the upper-level cache no longer has a valid copy. // That is, even though the upper-level cache got out on its // local bus first, some other invalidating transaction // reached the global bus before the upgrade did. if (pkt->needsExclusive()) { targets.replaceUpgrades(); deferredTargets.replaceUpgrades(); } return false; } // From here on down, the request issued by this MSHR logically // precedes the request we're snooping. if (pkt->needsExclusive()) { // snooped request still precedes the re-request we'll have to // issue for deferred targets, if any... deferredTargets.replaceUpgrades(); } if (hasPostInvalidate()) { // a prior snoop has already appended an invalidation, so // logically we don't have the block anymore; no need for // further snooping. return true; } if (isPendingDirty() || pkt->isInvalidate()) { // We need to save and replay the packet in two cases: // 1. We're awaiting an exclusive copy, so ownership is pending, // and we need to respond after we receive data. // 2. It's an invalidation (e.g., UpgradeReq), and we need // to forward the snoop up the hierarchy after the current // transaction completes. // Actual target device (typ. a memory) will delete the // packet on reception, so we need to save a copy here. // Clear flags and also allocate new data as the original // packet data storage may have been deleted by the time we // get to send this packet. PacketPtr cp_pkt = nullptr; if (isPendingDirty()) { // Case 1: The new packet will need to get the response from the // MSHR already queued up here cp_pkt = new Packet(pkt, true, true); pkt->assertMemInhibit(); // in the case of an uncacheable request there is no need // to set the exclusive flag, but since the recipient does // not care there is no harm in doing so pkt->setSupplyExclusive(); } else { // Case 2: We only need to buffer the packet for information // purposes; the original request can proceed without waiting // => Create a copy of the request, as that may get deallocated as // well cp_pkt = new Packet(new Request(*pkt->req), pkt->cmd); DPRINTF(Cache, "Copying packet %p -> %p and request %p -> %p\n", pkt, cp_pkt, pkt->req, cp_pkt->req); } targets.add(cp_pkt, curTick(), _order, Target::FromSnoop, downstreamPending && targets.needsExclusive); if (pkt->needsExclusive()) { // This transaction will take away our pending copy postInvalidate = true; } } if (!pkt->needsExclusive() && !pkt->req->isUncacheable()) { // This transaction will get a read-shared copy, downgrading // our copy if we had an exclusive one postDowngrade = true; pkt->assertShared(); } return true; } bool MSHR::promoteDeferredTargets() { assert(targets.empty()); if (deferredTargets.empty()) { return false; } // swap targets & deferredTargets lists std::swap(targets, deferredTargets); // clear deferredTargets flags deferredTargets.resetFlags(); order = targets.front().order; readyTime = std::max(curTick(), targets.front().readyTime); return true; } void MSHR::handleFill(PacketPtr pkt, CacheBlk *blk) { if (!pkt->sharedAsserted() && !(hasPostInvalidate() || hasPostDowngrade()) && deferredTargets.needsExclusive) { // We got an exclusive response, but we have deferred targets // which are waiting to request an exclusive copy (not because // of a pending invalidate). This can happen if the original // request was for a read-only (non-exclusive) block, but we // got an exclusive copy anyway because of the E part of the // MOESI/MESI protocol. Since we got the exclusive copy // there's no need to defer the targets, so move them up to // the regular target list. assert(!targets.needsExclusive); targets.needsExclusive = true; // if any of the deferred targets were upper-level cache // requests marked downstreamPending, need to clear that assert(!downstreamPending); // not pending here anymore deferredTargets.clearDownstreamPending(); // this clears out deferredTargets too targets.splice(targets.end(), deferredTargets); deferredTargets.resetFlags(); } } bool MSHR::checkFunctional(PacketPtr pkt) { // For printing, we treat the MSHR as a whole as single entity. // For other requests, we iterate over the individual targets // since that's where the actual data lies. if (pkt->isPrint()) { pkt->checkFunctional(this, blkAddr, isSecure, blkSize, NULL); return false; } else { return (targets.checkFunctional(pkt) || deferredTargets.checkFunctional(pkt)); } } void MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const { ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s\n", prefix, blkAddr, blkAddr + blkSize - 1, isSecure ? "s" : "ns", isForward ? "Forward" : "", isForwardNoResponse() ? "ForwNoResp" : "", needsExclusive() ? "Excl" : "", _isUncacheable ? "Unc" : "", inService ? "InSvc" : "", downstreamPending ? "DwnPend" : "", hasPostInvalidate() ? "PostInv" : "", hasPostDowngrade() ? "PostDowngr" : ""); ccprintf(os, "%s Targets:\n", prefix); targets.print(os, verbosity, prefix + " "); if (!deferredTargets.empty()) { ccprintf(os, "%s Deferred Targets:\n", prefix); deferredTargets.print(os, verbosity, prefix + " "); } } std::string MSHR::print() const { ostringstream str; print(str); return str.str(); }