/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "base/misc.hh" #include "config/full_system.hh" #if FULL_SYSTEM #include "mem/functional/memory_control.hh" #endif #include "mem/physical.hh" #include "sim/host.hh" #include "sim/builder.hh" #include "targetarch/isa_traits.hh" using namespace std; #if FULL_SYSTEM PhysicalMemory::PhysicalMemory(const string &n, Range range, MemoryController *mmu, const std::string &fname) : Memory(n), base_addr(range.start), pmem_size(range.size()), pmem_addr(NULL) { if (pmem_size % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); mmu->add_child(this, range); int fd = -1; if (!fname.empty()) { fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); if (fd == -1) { perror("open"); fatal("Could not open physical memory file: %s\n", fname); } ftruncate(fd, pmem_size); } int map_flags = (fd == -1) ? (MAP_ANON | MAP_PRIVATE) : MAP_SHARED; pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE, map_flags, fd, 0); if (fd != -1) close(fd); if (pmem_addr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap!\n"); } page_ptr = 0; } #endif PhysicalMemory::PhysicalMemory(const string &n) : Memory(n), memoryPort(this), base_addr(0), pmem_addr(NULL) { // Hardcoded to 128 MB for now. pmem_size = 1 << 27; if (pmem_size % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); int map_flags = MAP_ANON | MAP_PRIVATE; pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE, map_flags, -1, 0); if (pmem_addr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap!\n"); } page_ptr = 0; } PhysicalMemory::~PhysicalMemory() { if (pmem_addr) munmap(pmem_addr, pmem_size); } Addr PhysicalMemory::new_page() { Addr return_addr = page_ptr << LogVMPageSize; return_addr += base_addr; ++page_ptr; return return_addr; } // // little helper for better prot_* error messages // void PhysicalMemory::prot_access_error(Addr addr, int size, const string &func) { panic("invalid physical memory access!\n" "%s: %s(addr=%#x, size=%d) out of range (max=%#x)\n", name(), func, addr, size, pmem_size - 1); } void PhysicalMemory::prot_read(Addr addr, uint8_t *p, int size) { if (addr + size >= pmem_size) prot_access_error(addr, size, "prot_read"); memcpy(p, pmem_addr + addr - base_addr, size); } void PhysicalMemory::prot_write(Addr addr, const uint8_t *p, int size) { if (addr + size >= pmem_size) prot_access_error(addr, size, "prot_write"); memcpy(pmem_addr + addr - base_addr, p, size); } void PhysicalMemory::prot_memset(Addr addr, uint8_t val, int size) { if (addr + size >= pmem_size) prot_access_error(addr, size, "prot_memset"); memset(pmem_addr + addr - base_addr, val, size); } int PhysicalMemory::deviceBlockSize() { //Can accept anysize request return 0; } bool PhysicalMemory::doTimingAccess (Packet &pkt) { doFunctionalAccess(pkt); //Schedule a response event at curTick + lat; return true; } Tick PhysicalMemory::doAtomicAccess(Packet &pkt) { doFunctionalAccess(pkt); return curTick + lat; } void PhysicalMemory::doFunctionalAccess(Packet &pkt) { switch (pkt.cmd) { case Read: prot_read(pkt.addr, (uint8_t *)pkt.data, pkt.size); case Write: prot_write(pkt.addr, (uint8_t *)pkt.data, pkt.size); default: panic("unimplemented"); } } Port * PhysicalMemory::getPort(const char *if_name) { return &memoryPort; } void PhysicalMemory::recvStatusChange(Port::Status status) { panic("??"); } PhysicalMemory::MemoryPort::MemoryPort(PhysicalMemory *_memory) : memory(_memory) { } void PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status) { memory->recvStatusChange(status); } void PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &range_list, bool &owner) { panic("??"); } bool PhysicalMemory::MemoryPort::recvTiming(Packet &pkt) { return memory->doTimingAccess(pkt); } Tick PhysicalMemory::MemoryPort::recvAtomic(Packet &pkt) { return memory->doAtomicAccess(pkt); } void PhysicalMemory::MemoryPort::recvFunctional(Packet &pkt) { memory->doFunctionalAccess(pkt); } void PhysicalMemory::serialize(ostream &os) { gzFile compressedMem; string filename = name() + ".physmem"; SERIALIZE_SCALAR(pmem_size); SERIALIZE_SCALAR(filename); // write memory file string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } compressedMem = gzdopen(fd, "wb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMem, pmem_addr, pmem_size) != pmem_size) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } void PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) { gzFile compressedMem; long *tempPage; long *pmem_current; uint64_t curSize; uint32_t bytesRead; const int chunkSize = 16384; // unmap file that was mmaped in the constructor munmap(pmem_addr, pmem_size); string filename; UNSERIALIZE_SCALAR(pmem_size); UNSERIALIZE_SCALAR(filename); filename = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } compressedMem = gzdopen(fd, "rb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmem_addr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } curSize = 0; tempPage = (long*)malloc(chunkSize); if (tempPage == NULL) fatal("Unable to malloc memory to read file %s\n", filename); /* Only copy bytes that are non-zero, so we don't give the VM system hell */ while (curSize < pmem_size) { bytesRead = gzread(compressedMem, tempPage, chunkSize); if (bytesRead != chunkSize && bytesRead != pmem_size - curSize) fatal("Read failed on physical memory checkpoint file '%s'" " got %d bytes, expected %d or %d bytes\n", filename, bytesRead, chunkSize, pmem_size-curSize); assert(bytesRead % sizeof(long) == 0); for (int x = 0; x < bytesRead/sizeof(long); x++) { if (*(tempPage+x) != 0) { pmem_current = (long*)(pmem_addr + curSize + x * sizeof(long)); *pmem_current = *(tempPage+x); } } curSize += bytesRead; } free(tempPage); if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } BEGIN_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) Param file; #if FULL_SYSTEM SimObjectParam mmu; #endif Param > range; END_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) BEGIN_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) INIT_PARAM_DFLT(file, "memory mapped file", ""), #if FULL_SYSTEM INIT_PARAM(mmu, "Memory Controller"), #endif INIT_PARAM(range, "Device Address Range") END_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) CREATE_SIM_OBJECT(PhysicalMemory) { #if FULL_SYSTEM if (mmu) { return new PhysicalMemory(getInstanceName(), range, mmu, file); } #endif return new PhysicalMemory(getInstanceName()); } REGISTER_SIM_OBJECT("PhysicalMemory", PhysicalMemory)