/* * Copyright (c) 2014-2015 Advanced Micro Devices, Inc. * All rights reserved. * * For use for simulation and test purposes only * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Author: John Kalamatianos, Sooraj Puthoor */ #include "gpu-compute/global_memory_pipeline.hh" #include "debug/GPUMem.hh" #include "debug/GPUReg.hh" #include "gpu-compute/compute_unit.hh" #include "gpu-compute/gpu_dyn_inst.hh" #include "gpu-compute/shader.hh" #include "gpu-compute/vector_register_file.hh" #include "gpu-compute/wavefront.hh" GlobalMemPipeline::GlobalMemPipeline(const ComputeUnitParams* p) : computeUnit(nullptr), gmQueueSize(p->global_mem_queue_size), inflightStores(0), inflightLoads(0) { } void GlobalMemPipeline::init(ComputeUnit *cu) { computeUnit = cu; globalMemSize = computeUnit->shader->globalMemSize; _name = computeUnit->name() + ".GlobalMemPipeline"; } void GlobalMemPipeline::exec() { // apply any returned global memory operations GPUDynInstPtr m = !gmReturnedLoads.empty() ? gmReturnedLoads.front() : !gmReturnedStores.empty() ? gmReturnedStores.front() : nullptr; bool accessVrf = true; // check the VRF to see if the operands of a load (or load component // of an atomic) are accessible if ((m) && (m->m_op==Enums::MO_LD || MO_A(m->m_op))) { Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId]; accessVrf = w->computeUnit->vrf[m->simdId]-> vrfOperandAccessReady(m->seqNum(), w, m, VrfAccessType::WRITE); } if ((!gmReturnedStores.empty() || !gmReturnedLoads.empty()) && m->latency.rdy() && computeUnit->glbMemToVrfBus.rdy() && accessVrf && m->statusBitVector == VectorMask(0) && (computeUnit->shader->coissue_return || computeUnit->wfWait.at(m->pipeId).rdy())) { if (m->v_type == VT_32 && m->m_type == Enums::M_U8) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_U16) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_U32) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_S8) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_S16) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_S32) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_F16) doGmReturn(m); else if (m->v_type == VT_32 && m->m_type == Enums::M_F32) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_U8) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_U16) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_U32) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_U64) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_S8) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_S16) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_S32) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_S64) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_F16) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_F32) doGmReturn(m); else if (m->v_type == VT_64 && m->m_type == Enums::M_F64) doGmReturn(m); } // If pipeline has executed a global memory instruction // execute global memory packets and issue global // memory packets to DTLB if (!gmIssuedRequests.empty()) { GPUDynInstPtr mp = gmIssuedRequests.front(); if (mp->m_op == Enums::MO_LD || (mp->m_op >= Enums::MO_AAND && mp->m_op <= Enums::MO_AMIN) || (mp->m_op >= Enums::MO_ANRAND && mp->m_op <= Enums::MO_ANRMIN)) { if (inflightLoads >= gmQueueSize) { return; } else { ++inflightLoads; } } else { if (inflightStores >= gmQueueSize) { return; } else if (mp->m_op == Enums::MO_ST) { ++inflightStores; } } mp->initiateAcc(mp); gmIssuedRequests.pop(); DPRINTF(GPUMem, "CU%d: WF[%d][%d] Popping 0 mem_op = %s\n", computeUnit->cu_id, mp->simdId, mp->wfSlotId, Enums::MemOpTypeStrings[mp->m_op]); } } template void GlobalMemPipeline::doGmReturn(GPUDynInstPtr m) { Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId]; // Return data to registers if (m->m_op == Enums::MO_LD || MO_A(m->m_op) || MO_ANR(m->m_op)) { gmReturnedLoads.pop(); assert(inflightLoads > 0); --inflightLoads; if (m->m_op == Enums::MO_LD || MO_A(m->m_op)) { std::vector regVec; // iterate over number of destination register operands since // this is a load or atomic operation for (int k = 0; k < m->n_reg; ++k) { assert((sizeof(c1) * m->n_reg) <= MAX_WIDTH_FOR_MEM_INST); int dst = m->dst_reg + k; if (m->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST) dst = m->dst_reg_vec[k]; // virtual->physical VGPR mapping int physVgpr = w->remap(dst, sizeof(c0), 1); // save the physical VGPR index regVec.push_back(physVgpr); c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()]; for (int i = 0; i < w->computeUnit->wfSize(); ++i) { if (m->exec_mask[i]) { DPRINTF(GPUReg, "CU%d, WF[%d][%d], lane %d: " "$%s%d <- %d global ld done (src = wavefront " "ld inst)\n", w->computeUnit->cu_id, w->simdId, w->wfSlotId, i, sizeof(c0) == 4 ? "s" : "d", dst, *p1); // write the value into the physical VGPR. This is a // purely functional operation. No timing is modeled. w->computeUnit->vrf[w->simdId]->write(physVgpr, *p1, i); } ++p1; } } // Schedule the write operation of the load data on the VRF. // This simply models the timing aspect of the VRF write operation. // It does not modify the physical VGPR. loadVrfBankConflictCycles += w->computeUnit->vrf[w->simdId]->exec(m->seqNum(), w, regVec, sizeof(c0), m->time); } } else { gmReturnedStores.pop(); assert(inflightStores > 0); --inflightStores; } // Decrement outstanding register count computeUnit->shader->ScheduleAdd(&w->outstanding_reqs, m->time, -1); if (m->m_op == Enums::MO_ST || MO_A(m->m_op) || MO_ANR(m->m_op) || MO_H(m->m_op)) { computeUnit->shader->ScheduleAdd(&w->outstanding_reqs_wr_gm, m->time, -1); } if (m->m_op == Enums::MO_LD || MO_A(m->m_op) || MO_ANR(m->m_op)) { computeUnit->shader->ScheduleAdd(&w->outstanding_reqs_rd_gm, m->time, -1); } // Mark write bus busy for appropriate amount of time computeUnit->glbMemToVrfBus.set(m->time); if (!computeUnit->shader->coissue_return) w->computeUnit->wfWait.at(m->pipeId).set(m->time); } void GlobalMemPipeline::regStats() { loadVrfBankConflictCycles .name(name() + ".load_vrf_bank_conflict_cycles") .desc("total number of cycles GM data are delayed before updating " "the VRF") ; }