/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Andrew Schultz * Miguel Serrano */ /* @file * A single PCI device configuration space entry. */ #include #include #include #include "base/inifile.hh" #include "base/intmath.hh" #include "base/misc.hh" #include "base/str.hh" #include "base/trace.hh" #include "debug/PCIDEV.hh" #include "dev/alpha/tsunamireg.h" #include "dev/pciconfigall.hh" #include "dev/pcidev.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" #include "sim/byteswap.hh" #include "sim/core.hh" PciDev::PciConfigPort::PciConfigPort(PciDev *dev, int busid, int devid, int funcid, Platform *p) : SimpleTimingPort(dev->name() + "-pciconf", dev), device(dev), platform(p), busId(busid), deviceId(devid), functionId(funcid) { configAddr = platform->calcPciConfigAddr(busId, deviceId, functionId); } Tick PciDev::PciConfigPort::recvAtomic(PacketPtr pkt) { assert(pkt->getAddr() >= configAddr && pkt->getAddr() < configAddr + PCI_CONFIG_SIZE); return pkt->isRead() ? device->readConfig(pkt) : device->writeConfig(pkt); } AddrRangeList PciDev::PciConfigPort::getAddrRanges() { AddrRangeList ranges; if (configAddr != ULL(-1)) ranges.push_back(RangeSize(configAddr, PCI_CONFIG_SIZE+1)); return ranges; } PciDev::PciDev(const Params *p) : DmaDevice(p), platform(p->platform), pioDelay(p->pio_latency), configDelay(p->config_latency), configPort(this, params()->pci_bus, params()->pci_dev, params()->pci_func, params()->platform) { config.vendor = htole(p->VendorID); config.device = htole(p->DeviceID); config.command = htole(p->Command); config.status = htole(p->Status); config.revision = htole(p->Revision); config.progIF = htole(p->ProgIF); config.subClassCode = htole(p->SubClassCode); config.classCode = htole(p->ClassCode); config.cacheLineSize = htole(p->CacheLineSize); config.latencyTimer = htole(p->LatencyTimer); config.headerType = htole(p->HeaderType); config.bist = htole(p->BIST); config.baseAddr[0] = htole(p->BAR0); config.baseAddr[1] = htole(p->BAR1); config.baseAddr[2] = htole(p->BAR2); config.baseAddr[3] = htole(p->BAR3); config.baseAddr[4] = htole(p->BAR4); config.baseAddr[5] = htole(p->BAR5); config.cardbusCIS = htole(p->CardbusCIS); config.subsystemVendorID = htole(p->SubsystemVendorID); config.subsystemID = htole(p->SubsystemID); config.expansionROM = htole(p->ExpansionROM); config.reserved0 = 0; config.reserved1 = 0; config.interruptLine = htole(p->InterruptLine); config.interruptPin = htole(p->InterruptPin); config.minimumGrant = htole(p->MinimumGrant); config.maximumLatency = htole(p->MaximumLatency); BARSize[0] = p->BAR0Size; BARSize[1] = p->BAR1Size; BARSize[2] = p->BAR2Size; BARSize[3] = p->BAR3Size; BARSize[4] = p->BAR4Size; BARSize[5] = p->BAR5Size; legacyIO[0] = p->BAR0LegacyIO; legacyIO[1] = p->BAR1LegacyIO; legacyIO[2] = p->BAR2LegacyIO; legacyIO[3] = p->BAR3LegacyIO; legacyIO[4] = p->BAR4LegacyIO; legacyIO[5] = p->BAR5LegacyIO; for (int i = 0; i < 6; ++i) { if (legacyIO[i]) { BARAddrs[i] = platform->calcPciIOAddr(letoh(config.baseAddr[i])); config.baseAddr[i] = 0; } else { BARAddrs[i] = 0; uint32_t barsize = BARSize[i]; if (barsize != 0 && !isPowerOf2(barsize)) { fatal("BAR %d size %d is not a power of 2\n", i, BARSize[i]); } } } platform->registerPciDevice(p->pci_bus, p->pci_dev, p->pci_func, letoh(config.interruptLine)); } void PciDev::init() { if (!configPort.isConnected()) panic("PCI config port on %s not connected to anything!\n", name()); configPort.sendRangeChange(); DmaDevice::init(); } unsigned int PciDev::drain(Event *de) { unsigned int count; count = pioPort.drain(de) + dmaPort.drain(de) + configPort.drain(de); if (count) changeState(Draining); else changeState(Drained); return count; } Tick PciDev::readConfig(PacketPtr pkt) { int offset = pkt->getAddr() & PCI_CONFIG_SIZE; if (offset >= PCI_DEVICE_SPECIFIC) panic("Device specific PCI config space not implemented!\n"); pkt->allocate(); switch (pkt->getSize()) { case sizeof(uint8_t): pkt->set(config.data[offset]); DPRINTF(PCIDEV, "readConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; case sizeof(uint16_t): pkt->set(*(uint16_t*)&config.data[offset]); DPRINTF(PCIDEV, "readConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; case sizeof(uint32_t): pkt->set(*(uint32_t*)&config.data[offset]); DPRINTF(PCIDEV, "readConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; default: panic("invalid access size(?) for PCI configspace!\n"); } pkt->makeAtomicResponse(); return configDelay; } AddrRangeList PciDev::getAddrRanges() { AddrRangeList ranges; int x = 0; for (x = 0; x < 6; x++) if (BARAddrs[x] != 0) ranges.push_back(RangeSize(BARAddrs[x],BARSize[x])); return ranges; } Tick PciDev::writeConfig(PacketPtr pkt) { int offset = pkt->getAddr() & PCI_CONFIG_SIZE; if (offset >= PCI_DEVICE_SPECIFIC) panic("Device specific PCI config space not implemented!\n"); switch (pkt->getSize()) { case sizeof(uint8_t): switch (offset) { case PCI0_INTERRUPT_LINE: config.interruptLine = pkt->get(); break; case PCI_CACHE_LINE_SIZE: config.cacheLineSize = pkt->get(); break; case PCI_LATENCY_TIMER: config.latencyTimer = pkt->get(); break; /* Do nothing for these read-only registers */ case PCI0_INTERRUPT_PIN: case PCI0_MINIMUM_GRANT: case PCI0_MAXIMUM_LATENCY: case PCI_CLASS_CODE: case PCI_REVISION_ID: break; default: panic("writing to a read only register"); } DPRINTF(PCIDEV, "writeConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; case sizeof(uint16_t): switch (offset) { case PCI_COMMAND: config.command = pkt->get(); break; case PCI_STATUS: config.status = pkt->get(); break; case PCI_CACHE_LINE_SIZE: config.cacheLineSize = pkt->get(); break; default: panic("writing to a read only register"); } DPRINTF(PCIDEV, "writeConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; case sizeof(uint32_t): switch (offset) { case PCI0_BASE_ADDR0: case PCI0_BASE_ADDR1: case PCI0_BASE_ADDR2: case PCI0_BASE_ADDR3: case PCI0_BASE_ADDR4: case PCI0_BASE_ADDR5: { int barnum = BAR_NUMBER(offset); if (!legacyIO[barnum]) { // convert BAR values to host endianness uint32_t he_old_bar = letoh(config.baseAddr[barnum]); uint32_t he_new_bar = letoh(pkt->get()); uint32_t bar_mask = BAR_IO_SPACE(he_old_bar) ? BAR_IO_MASK : BAR_MEM_MASK; // Writing 0xffffffff to a BAR tells the card to set the // value of the bar to a bitmask indicating the size of // memory it needs if (he_new_bar == 0xffffffff) { he_new_bar = ~(BARSize[barnum] - 1); } else { // does it mean something special to write 0 to a BAR? he_new_bar &= ~bar_mask; if (he_new_bar) { BARAddrs[barnum] = BAR_IO_SPACE(he_old_bar) ? platform->calcPciIOAddr(he_new_bar) : platform->calcPciMemAddr(he_new_bar); pioPort.sendRangeChange(); } } config.baseAddr[barnum] = htole((he_new_bar & ~bar_mask) | (he_old_bar & bar_mask)); } } break; case PCI0_ROM_BASE_ADDR: if (letoh(pkt->get()) == 0xfffffffe) config.expansionROM = htole((uint32_t)0xffffffff); else config.expansionROM = pkt->get(); break; case PCI_COMMAND: // This could also clear some of the error bits in the Status // register. However they should never get set, so lets ignore // it for now config.command = pkt->get(); break; default: DPRINTF(PCIDEV, "Writing to a read only register"); } DPRINTF(PCIDEV, "writeConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n", params()->pci_dev, params()->pci_func, offset, (uint32_t)pkt->get()); break; default: panic("invalid access size(?) for PCI configspace!\n"); } pkt->makeAtomicResponse(); return configDelay; } void PciDev::serialize(std::ostream &os) { SERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0])); SERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0])); SERIALIZE_ARRAY(config.data, sizeof(config.data) / sizeof(config.data[0])); } void PciDev::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0])); UNSERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0])); UNSERIALIZE_ARRAY(config.data, sizeof(config.data) / sizeof(config.data[0])); pioPort.sendRangeChange(); }