/* * Copyright (c) 2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* @file * A single PCI device configuration space entry. */ #include #include #include #include #include "base/inifile.hh" #include "base/misc.hh" #include "base/str.hh" // for to_number #include "base/trace.hh" #include "dev/pciareg.h" #include "dev/pcidev.hh" #include "dev/pciconfigall.hh" #include "mem/functional_mem/memory_control.hh" #include "sim/builder.hh" #include "sim/param.hh" #include "sim/universe.hh" #include "dev/tsunamireg.h" using namespace std; PciDev::PciDev(Params *p) : DmaDevice(p->name), _params(p), plat(p->plat), configData(p->configData) { // copy the config data from the PciConfigData object if (configData) { memcpy(config.data, configData->config.data, sizeof(config.data)); memcpy(BARSize, configData->BARSize, sizeof(BARSize)); memcpy(BARAddrs, configData->BARAddrs, sizeof(BARAddrs)); } else panic("NULL pointer to configuration data"); // Setup pointer in config space to point to this entry if (p->configSpace->deviceExists(p->deviceNum, p->functionNum)) panic("Two PCI devices occuping same dev: %#x func: %#x", p->deviceNum, p->functionNum); else p->configSpace->registerDevice(p->deviceNum, p->functionNum, this); } void PciDev::ReadConfig(int offset, int size, uint8_t *data) { if (offset >= PCI_DEVICE_SPECIFIC) panic("Device specific PCI config space not implemented!\n"); switch(size) { case sizeof(uint32_t): memcpy((uint8_t*)data, config.data + offset, sizeof(uint32_t)); *(uint32_t*)data = htoa(*(uint32_t*)data); DPRINTF(PCIDEV, "read device: %#x function: %#x register: %#x %d bytes: data: %#x\n", params()->deviceNum, params()->functionNum, offset, size, *(uint32_t*)(config.data + offset)); break; case sizeof(uint16_t): memcpy((uint8_t*)data, config.data + offset, sizeof(uint16_t)); *(uint16_t*)data = htoa(*(uint16_t*)data); DPRINTF(PCIDEV, "read device: %#x function: %#x register: %#x %d bytes: data: %#x\n", params()->deviceNum, params()->functionNum, offset, size, *(uint16_t*)(config.data + offset)); break; case sizeof(uint8_t): memcpy((uint8_t*)data, config.data + offset, sizeof(uint8_t)); DPRINTF(PCIDEV, "read device: %#x function: %#x register: %#x %d bytes: data: %#x\n", params()->deviceNum, params()->functionNum, offset, size, (uint16_t)(*(uint8_t*)(config.data + offset))); break; default: panic("Invalid Read Size"); } } void PciDev::WriteConfig(int offset, int size, uint32_t data) { if (offset >= PCI_DEVICE_SPECIFIC) panic("Device specific PCI config space not implemented!\n"); uint32_t barnum; union { uint8_t byte_value; uint16_t half_value; uint32_t word_value; }; word_value = data; DPRINTF(PCIDEV, "write device: %#x function: %#x reg: %#x size: %d data: %#x\n", params()->deviceNum, params()->functionNum, offset, size, word_value); barnum = (offset - PCI0_BASE_ADDR0) >> 2; switch (size) { case sizeof(uint8_t): // 1-byte access switch (offset) { case PCI0_INTERRUPT_LINE: case PCI_CACHE_LINE_SIZE: case PCI_LATENCY_TIMER: *(uint8_t *)&config.data[offset] = htoa(byte_value); break; default: panic("writing to a read only register"); } break; case sizeof(uint16_t): // 2-byte access switch (offset) { case PCI_COMMAND: case PCI_STATUS: case PCI_CACHE_LINE_SIZE: *(uint16_t *)&config.data[offset] = htoa(half_value); break; default: panic("writing to a read only register"); } break; case sizeof(uint16_t)+1: // 3-byte access panic("invalid access size"); case sizeof(uint32_t): // 4-byte access switch (offset) { case PCI0_BASE_ADDR0: case PCI0_BASE_ADDR1: case PCI0_BASE_ADDR2: case PCI0_BASE_ADDR3: case PCI0_BASE_ADDR4: case PCI0_BASE_ADDR5: // Writing 0xffffffff to a BAR tells the card to set the // value of the bar // to size of memory it needs if (word_value == 0xffffffff) { // This is I/O Space, bottom two bits are read only if (htoa(config.data[offset]) & 0x1) { *(uint32_t *)&config.data[offset] = htoa( ~(BARSize[barnum] - 1) | (htoa(config.data[offset]) & 0x3)); } else { // This is memory space, bottom four bits are read only *(uint32_t *)&config.data[offset] = htoa( ~(BARSize[barnum] - 1) | (htoa(config.data[offset]) & 0xF)); } } else { MemoryController *mmu = params()->mmu; // This is I/O Space, bottom two bits are read only if(htoa(config.data[offset]) & 0x1) { *(uint32_t *)&config.data[offset] = htoa((word_value & ~0x3) | (htoa(config.data[offset]) & 0x3)); if (word_value & ~0x1) { Addr base_addr = (word_value & ~0x1) + TSUNAMI_PCI0_IO; Addr base_size = BARSize[barnum]; // It's never been set if (BARAddrs[barnum] == 0) mmu->add_child((FunctionalMemory *)this, RangeSize(base_addr, base_size)); else mmu->update_child((FunctionalMemory *)this, RangeSize(BARAddrs[barnum], base_size), RangeSize(base_addr, base_size)); BARAddrs[barnum] = base_addr; } } else { // This is memory space, bottom four bits are read only *(uint32_t *)&config.data[offset] = htoa((word_value & ~0xF) | (htoa(config.data[offset]) & 0xF)); if (word_value & ~0x3) { Addr base_addr = (word_value & ~0x3) + TSUNAMI_PCI0_MEMORY; Addr base_size = BARSize[barnum]; // It's never been set if (BARAddrs[barnum] == 0) mmu->add_child((FunctionalMemory *)this, RangeSize(base_addr, base_size)); else mmu->update_child((FunctionalMemory *)this, RangeSize(BARAddrs[barnum], base_size), RangeSize(base_addr, base_size)); BARAddrs[barnum] = base_addr; } } } break; case PCI0_ROM_BASE_ADDR: if (word_value == 0xfffffffe) *(uint32_t *)&config.data[offset] = 0xffffffff; else *(uint32_t *)&config.data[offset] = htoa(word_value); break; case PCI_COMMAND: // This could also clear some of the error bits in the Status // register. However they should never get set, so lets ignore // it for now *(uint16_t *)&config.data[offset] = htoa(half_value); break; default: DPRINTF(PCIDEV, "Writing to a read only register"); } break; } } void PciDev::serialize(ostream &os) { SERIALIZE_ARRAY(BARSize, 6); SERIALIZE_ARRAY(BARAddrs, 6); SERIALIZE_ARRAY(config.data, 64); } void PciDev::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_ARRAY(BARSize, 6); UNSERIALIZE_ARRAY(BARAddrs, 6); UNSERIALIZE_ARRAY(config.data, 64); // Add the MMU mappings for the BARs for (int i=0; i < 6; i++) { if (BARAddrs[i] != 0) params()->mmu->add_child(this, RangeSize(BARAddrs[i], BARSize[i])); } } #ifndef DOXYGEN_SHOULD_SKIP_THIS BEGIN_DECLARE_SIM_OBJECT_PARAMS(PciConfigData) Param VendorID; Param DeviceID; Param Command; Param Status; Param Revision; Param ProgIF; Param SubClassCode; Param ClassCode; Param CacheLineSize; Param LatencyTimer; Param HeaderType; Param BIST; Param BAR0; Param BAR1; Param BAR2; Param BAR3; Param BAR4; Param BAR5; Param CardbusCIS; Param SubsystemVendorID; Param SubsystemID; Param ExpansionROM; Param InterruptLine; Param InterruptPin; Param MinimumGrant; Param MaximumLatency; Param BAR0Size; Param BAR1Size; Param BAR2Size; Param BAR3Size; Param BAR4Size; Param BAR5Size; END_DECLARE_SIM_OBJECT_PARAMS(PciConfigData) BEGIN_INIT_SIM_OBJECT_PARAMS(PciConfigData) INIT_PARAM(VendorID, "Vendor ID"), INIT_PARAM(DeviceID, "Device ID"), INIT_PARAM_DFLT(Command, "Command Register", 0x00), INIT_PARAM_DFLT(Status, "Status Register", 0x00), INIT_PARAM_DFLT(Revision, "Device Revision", 0x00), INIT_PARAM_DFLT(ProgIF, "Programming Interface", 0x00), INIT_PARAM(SubClassCode, "Sub-Class Code"), INIT_PARAM(ClassCode, "Class Code"), INIT_PARAM_DFLT(CacheLineSize, "System Cacheline Size", 0x00), INIT_PARAM_DFLT(LatencyTimer, "PCI Latency Timer", 0x00), INIT_PARAM_DFLT(HeaderType, "PCI Header Type", 0x00), INIT_PARAM_DFLT(BIST, "Built In Self Test", 0x00), INIT_PARAM_DFLT(BAR0, "Base Address Register 0", 0x00), INIT_PARAM_DFLT(BAR1, "Base Address Register 1", 0x00), INIT_PARAM_DFLT(BAR2, "Base Address Register 2", 0x00), INIT_PARAM_DFLT(BAR3, "Base Address Register 3", 0x00), INIT_PARAM_DFLT(BAR4, "Base Address Register 4", 0x00), INIT_PARAM_DFLT(BAR5, "Base Address Register 5", 0x00), INIT_PARAM_DFLT(CardbusCIS, "Cardbus Card Information Structure", 0x00), INIT_PARAM_DFLT(SubsystemVendorID, "Subsystem Vendor ID", 0x00), INIT_PARAM_DFLT(SubsystemID, "Subsystem ID", 0x00), INIT_PARAM_DFLT(ExpansionROM, "Expansion ROM Base Address Register", 0x00), INIT_PARAM(InterruptLine, "Interrupt Line Register"), INIT_PARAM(InterruptPin, "Interrupt Pin Register"), INIT_PARAM_DFLT(MinimumGrant, "Minimum Grant", 0x00), INIT_PARAM_DFLT(MaximumLatency, "Maximum Latency", 0x00), INIT_PARAM_DFLT(BAR0Size, "Base Address Register 0 Size", 0x00), INIT_PARAM_DFLT(BAR1Size, "Base Address Register 1 Size", 0x00), INIT_PARAM_DFLT(BAR2Size, "Base Address Register 2 Size", 0x00), INIT_PARAM_DFLT(BAR3Size, "Base Address Register 3 Size", 0x00), INIT_PARAM_DFLT(BAR4Size, "Base Address Register 4 Size", 0x00), INIT_PARAM_DFLT(BAR5Size, "Base Address Register 5 Size", 0x00) END_INIT_SIM_OBJECT_PARAMS(PciConfigData) CREATE_SIM_OBJECT(PciConfigData) { PciConfigData *data = new PciConfigData(getInstanceName()); data->config.hdr.vendor = htoa(VendorID); data->config.hdr.device = htoa(DeviceID); data->config.hdr.command = htoa(Command); data->config.hdr.status = htoa(Status); data->config.hdr.revision = htoa(Revision); data->config.hdr.progIF = htoa(ProgIF); data->config.hdr.subClassCode = htoa(SubClassCode); data->config.hdr.classCode = htoa(ClassCode); data->config.hdr.cacheLineSize = htoa(CacheLineSize); data->config.hdr.latencyTimer = htoa(LatencyTimer); data->config.hdr.headerType = htoa(HeaderType); data->config.hdr.bist = htoa(BIST); data->config.hdr.pci0.baseAddr0 = htoa(BAR0); data->config.hdr.pci0.baseAddr1 = htoa(BAR1); data->config.hdr.pci0.baseAddr2 = htoa(BAR2); data->config.hdr.pci0.baseAddr3 = htoa(BAR3); data->config.hdr.pci0.baseAddr4 = htoa(BAR4); data->config.hdr.pci0.baseAddr5 = htoa(BAR5); data->config.hdr.pci0.cardbusCIS = htoa(CardbusCIS); data->config.hdr.pci0.subsystemVendorID = htoa(SubsystemVendorID); data->config.hdr.pci0.subsystemID = htoa(SubsystemVendorID); data->config.hdr.pci0.expansionROM = htoa(ExpansionROM); data->config.hdr.pci0.interruptLine = htoa(InterruptLine); data->config.hdr.pci0.interruptPin = htoa(InterruptPin); data->config.hdr.pci0.minimumGrant = htoa(MinimumGrant); data->config.hdr.pci0.maximumLatency = htoa(MaximumLatency); data->BARSize[0] = BAR0Size; data->BARSize[1] = BAR1Size; data->BARSize[2] = BAR2Size; data->BARSize[3] = BAR3Size; data->BARSize[4] = BAR4Size; data->BARSize[5] = BAR5Size; return data; } REGISTER_SIM_OBJECT("PciConfigData", PciConfigData) #endif // DOXYGEN_SHOULD_SKIP_THIS