/* * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "dev/io_device.hh" #include "sim/builder.hh" PioPort::PioPort(PioDevice *dev, Platform *p) : device(dev), platform(p) { } Tick PioPort::recvAtomic(Packet *pkt) { return device->recvAtomic(pkt); } void PioPort::recvFunctional(Packet *pkt) { device->recvAtomic(pkt); } void PioPort::getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { snoop.clear(); device->addressRanges(resp); } Packet * PioPort::recvRetry() { Packet* pkt = transmitList.front(); transmitList.pop_front(); return pkt; } void PioPort::SendEvent::process() { if (port->Port::sendTiming(packet) == Success) return; port->transmitList.push_back(packet); } bool PioPort::recvTiming(Packet *pkt) { device->recvAtomic(pkt); sendTiming(pkt, pkt->time - pkt->req->getTime()); return Success; } PioDevice::~PioDevice() { if (pioPort) delete pioPort; } void PioDevice::init() { if (!pioPort) panic("Pio port not connected to anything!"); pioPort->sendStatusChange(Port::RangeChange); } void BasicPioDevice::addressRanges(AddrRangeList &range_list) { assert(pioSize != 0); range_list.clear(); range_list.push_back(RangeSize(pioAddr, pioSize)); } DmaPort::DmaPort(DmaDevice *dev, Platform *p) : device(dev), platform(p), pendingCount(0) { } bool DmaPort::recvTiming(Packet *pkt) { if (pkt->senderState) { DmaReqState *state; state = (DmaReqState*)pkt->senderState; state->completionEvent->schedule(pkt->time - pkt->req->getTime()); delete pkt->req; delete pkt; } else { delete pkt->req; delete pkt; } return Success; } DmaDevice::DmaDevice(Params *p) : PioDevice(p), dmaPort(NULL) { } void DmaPort::SendEvent::process() { if (port->Port::sendTiming(packet) == Success) return; port->transmitList.push_back(packet); } Packet * DmaPort::recvRetry() { Packet* pkt = transmitList.front(); transmitList.pop_front(); return pkt; } void DmaPort::dmaAction(Command cmd, Addr addr, int size, Event *event, uint8_t *data) { assert(event); int prevSize = 0; Packet basePkt; Request baseReq(false); basePkt.flags = 0; basePkt.coherence = NULL; basePkt.senderState = NULL; basePkt.dest = Packet::Broadcast; basePkt.cmd = cmd; basePkt.result = Unknown; basePkt.req = NULL; // baseReq.nicReq = true; baseReq.setTime(curTick); for (ChunkGenerator gen(addr, size, peerBlockSize()); !gen.done(); gen.next()) { Packet *pkt = new Packet(basePkt); Request *req = new Request(baseReq); pkt->addr = gen.addr(); pkt->size = gen.size(); pkt->req = req; pkt->req->setPaddr(pkt->addr); pkt->req->setSize(pkt->size); // Increment the data pointer on a write if (data) pkt->dataStatic(data + prevSize) ; prevSize += pkt->size; // Set the last bit of the dma as the final packet for this dma // and set it's completion event. if (prevSize == size) { DmaReqState *state = new DmaReqState(event, true); pkt->senderState = (void*)state; } assert(pendingCount >= 0); pendingCount++; sendDma(pkt); } // since this isn't getting used and we want a check to make sure that all // packets had data in them at some point. basePkt.dataStatic((uint8_t*)NULL); } void DmaPort::sendDma(Packet *pkt) { // some kind of selction between access methods // more work is going to have to be done to make // switching actually work /* MemState state = device->platform->system->memState; if (state == Timing) { if (sendTiming(pkt) == Failure) transmitList.push_back(&packet); } else if (state == Atomic) {*/ sendAtomic(pkt); if (pkt->senderState) { DmaReqState *state = (DmaReqState*)pkt->senderState; state->completionEvent->schedule(curTick + (pkt->time - pkt->req->getTime()) +1); } pendingCount--; assert(pendingCount >= 0); delete pkt->req; delete pkt; /* } else if (state == Functional) { sendFunctional(pkt); // Is this correct??? completionEvent->schedule(pkt->req->responseTime - pkt->req->requestTime); completionEvent == NULL; } else panic("Unknown memory command state."); */ } DmaDevice::~DmaDevice() { if (dmaPort) delete dmaPort; }