/* * Copyright (c) 2010 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: William Wang */ #include "base/trace.hh" #include "dev/arm/amba_device.hh" #include "dev/arm/gic.hh" #include "dev/arm/pl111.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" using namespace AmbaDev; // initialize clcd registers Pl111::Pl111(const Params *p) : AmbaDmaDevice(p), lcdTiming0(0), lcdTiming1(0), lcdTiming2(0), lcdTiming3(0), lcdUpbase(0), lcdLpbase(0), lcdControl(0), lcdImsc(0), lcdRis(0), lcdMis(0), lcdIcr(0), lcdUpcurr(0), lcdLpcurr(0), clcdCrsrCtrl(0), clcdCrsrConfig(0), clcdCrsrPalette0(0), clcdCrsrPalette1(0), clcdCrsrXY(0), clcdCrsrClip(0), clcdCrsrImsc(0), clcdCrsrIcr(0), clcdCrsrRis(0), clcdCrsrMis(0), clock(p->clock), height(0), width(0), startTime(0), startAddr(0), maxAddr(0), curAddr(0), waterMark(0), dmaPendingNum(0), readEvent(this), fillFifoEvent(this), dmaDoneEvent(maxOutstandingDma, this), intEvent(this) { pioSize = 0xFFFF; memset(lcdPalette, 0, sizeof(lcdPalette)); memset(cursorImage, 0, sizeof(cursorImage)); memset(dmaBuffer, 0, sizeof(dmaBuffer)); memset(frameBuffer, 0, sizeof(frameBuffer)); } // read registers and frame buffer Tick Pl111::read(PacketPtr pkt) { // use a temporary data since the LCD registers are read/written with // different size operations uint32_t data = 0; if ((pkt->getAddr()& 0xffff0000) == pioAddr) { assert(pkt->getAddr() >= pioAddr && pkt->getAddr() < pioAddr + pioSize); Addr daddr = pkt->getAddr()&0xFFFF; pkt->allocate(); DPRINTF(PL111, " read register %#x size=%d\n", daddr, pkt->getSize()); switch (daddr) { case LcdTiming0: data = lcdTiming0; break; case LcdTiming1: data = lcdTiming1; break; case LcdTiming2: data = lcdTiming2; break; case LcdTiming3: data = lcdTiming3; break; case LcdUpBase: data = lcdUpbase; break; case LcdLpBase: data = lcdLpbase; break; case LcdControl: data = lcdControl; break; case LcdImsc: warn("LCD interrupt set/clear function not supported\n"); data = lcdImsc; break; case LcdRis: warn("LCD Raw interrupt status function not supported\n"); data = lcdRis; break; case LcdMis: warn("LCD Masked interrupt status function not supported\n"); data = lcdMis; break; case LcdIcr: panic("LCD register at offset %#x is Write-Only\n", daddr); break; case LcdUpCurr: data = lcdUpcurr; break; case LcdLpCurr: data = lcdLpcurr; break; case ClcdCrsrCtrl: data = clcdCrsrCtrl; break; case ClcdCrsrConfig: data = clcdCrsrConfig; break; case ClcdCrsrPalette0: data = clcdCrsrPalette0; break; case ClcdCrsrPalette1: data = clcdCrsrPalette1; break; case ClcdCrsrXY: data = clcdCrsrXY; break; case ClcdCrsrClip: data = clcdCrsrClip; break; case ClcdCrsrImsc: data = clcdCrsrImsc; break; case ClcdCrsrIcr: panic("CLCD register at offset %#x is Write-Only\n", daddr); break; case ClcdCrsrRis: data = clcdCrsrRis; break; case ClcdCrsrMis: data = clcdCrsrMis; break; default: if (AmbaDev::readId(pkt, AMBA_ID, pioAddr)) { // Hack for variable size accesses data = pkt->get(); break; } else if (daddr >= CrsrImage && daddr <= 0xBFC) { // CURSOR IMAGE int index; index = (daddr - CrsrImage) >> 2; data= cursorImage[index]; break; } else if (daddr >= LcdPalette && daddr <= 0x3FC) { // LCD Palette int index; index = (daddr - LcdPalette) >> 2; data = lcdPalette[index]; break; } else { panic("Tried to read CLCD register at offset %#x that \ doesn't exist\n", daddr); break; } } } switch(pkt->getSize()) { case 1: pkt->set(data); break; case 2: pkt->set(data); break; case 4: pkt->set(data); break; default: panic("CLCD controller read size too big?\n"); break; } pkt->makeAtomicResponse(); return pioDelay; } // write registers and frame buffer Tick Pl111::write(PacketPtr pkt) { // use a temporary data since the LCD registers are read/written with // different size operations // uint32_t data = 0; switch(pkt->getSize()) { case 1: data = pkt->get(); break; case 2: data = pkt->get(); break; case 4: data = pkt->get(); break; default: panic("PL111 CLCD controller write size too big?\n"); break; } if ((pkt->getAddr()& 0xffff0000) == pioAddr) { assert(pkt->getAddr() >= pioAddr && pkt->getAddr() < pioAddr + pioSize); Addr daddr = pkt->getAddr() - pioAddr; DPRINTF(PL111, " write register %#x value %#x size=%d\n", daddr, pkt->get(), pkt->getSize()); switch (daddr) { case LcdTiming0: lcdTiming0 = data; // width = 16 * (PPL+1) width = (lcdTiming0.ppl + 1) << 4; break; case LcdTiming1: lcdTiming1 = data; // height = LPP + 1 height = (lcdTiming1.lpp) + 1; break; case LcdTiming2: lcdTiming2 = data; break; case LcdTiming3: lcdTiming3 = data; break; case LcdUpBase: lcdUpbase = data; break; case LcdLpBase: warn("LCD dual screen mode not supported\n"); lcdLpbase = data; break; case LcdControl: int old_lcdpwr; old_lcdpwr = lcdControl.lcdpwr; lcdControl = data; // LCD power enable if (lcdControl.lcdpwr&&!old_lcdpwr) { DPRINTF(PL111, " lcd size: height %d width %d\n", height, width); waterMark = lcdControl.watermark ? 8 : 4; readFramebuffer(); } break; case LcdImsc: warn("LCD interrupt mask set/clear not supported\n"); lcdImsc = data; break; case LcdRis: warn("LCD register at offset %#x is Read-Only\n", daddr); break; case LcdMis: warn("LCD register at offset %#x is Read-Only\n", daddr); break; case LcdIcr: warn("LCD interrupt clear not supported\n"); lcdIcr = data; break; case LcdUpCurr: warn("LCD register at offset %#x is Read-Only\n", daddr); break; case LcdLpCurr: warn("LCD register at offset %#x is Read-Only\n", daddr); break; case ClcdCrsrCtrl: clcdCrsrCtrl = data; break; case ClcdCrsrConfig: clcdCrsrConfig = data; break; case ClcdCrsrPalette0: clcdCrsrPalette0 = data; break; case ClcdCrsrPalette1: clcdCrsrPalette1 = data; break; case ClcdCrsrXY: clcdCrsrXY = data; break; case ClcdCrsrClip: clcdCrsrClip = data; break; case ClcdCrsrImsc: clcdCrsrImsc = data; break; case ClcdCrsrIcr: clcdCrsrIcr = data; break; case ClcdCrsrRis: warn("CLCD register at offset %#x is Read-Only\n", daddr); break; case ClcdCrsrMis: warn("CLCD register at offset %#x is Read-Only\n", daddr); break; default: if (daddr >= CrsrImage && daddr <= 0xBFC) { // CURSOR IMAGE int index; index = (daddr - CrsrImage) >> 2; cursorImage[index] = data; break; } else if (daddr >= LcdPalette && daddr <= 0x3FC) { // LCD Palette int index; index = (daddr - LcdPalette) >> 2; lcdPalette[index] = data; break; } else { panic("Tried to write PL111 register at offset %#x that \ doesn't exist\n", daddr); break; } } } pkt->makeAtomicResponse(); return pioDelay; } void Pl111::readFramebuffer() { // initialization for dma read from frame buffer to dma buffer uint32_t length = height*width; if (startAddr != lcdUpbase) { startAddr = lcdUpbase; } curAddr = 0; startTime = curTick(); maxAddr = static_cast(length*sizeof(uint32_t)); dmaPendingNum =0 ; fillFifo(); } void Pl111::fillFifo() { while ((dmaPendingNum < maxOutstandingDma) && (maxAddr >= curAddr + dmaSize )) { // concurrent dma reads need different dma done events // due to assertion in scheduling state ++dmaPendingNum; DPRINTF(PL111, " ++ DMA pending number %d read addr %#x\n", dmaPendingNum, curAddr); assert(!dmaDoneEvent[dmaPendingNum-1].scheduled()); dmaRead(curAddr + startAddr, dmaSize, &dmaDoneEvent[dmaPendingNum-1], curAddr + dmaBuffer); curAddr += dmaSize; } } void Pl111::dmaDone() { Tick maxFrameTime = lcdTiming2.cpl*height*clock; --dmaPendingNum; DPRINTF(PL111, " -- DMA pending number %d\n", dmaPendingNum); if (maxAddr == curAddr && !dmaPendingNum) { if ((curTick() - startTime) > maxFrameTime) warn("CLCD controller buffer underrun, took %d cycles when should" " have taken %d\n", curTick() - startTime, maxFrameTime); // double buffering so the vnc server doesn't see a tear in the screen memcpy(frameBuffer, dmaBuffer, maxAddr); assert(!readEvent.scheduled()); DPRINTF(PL111, "-- write out frame buffer into bmp\n"); writeBMP(frameBuffer); DPRINTF(PL111, "-- schedule next dma read event at %d tick \n", maxFrameTime + curTick()); schedule(readEvent, nextCycle(startTime + maxFrameTime)); } if (dmaPendingNum > (maxOutstandingDma - waterMark)) return; if (!fillFifoEvent.scheduled()) schedule(fillFifoEvent, nextCycle()); } Tick Pl111::nextCycle() { Tick nextTick = curTick() + clock - 1; nextTick -= nextTick%clock; return nextTick; } Tick Pl111::nextCycle(Tick beginTick) { Tick nextTick = beginTick; if (nextTick%clock!=0) nextTick = nextTick - (nextTick%clock) + clock; assert(nextTick >= curTick()); return nextTick; } // write out the frame buffer into a bitmap file void Pl111::writeBMP(uint32_t* frameBuffer) { fstream pic; // write out bmp head std::string filename = "./m5out/frameBuffer.bmp"; pic.open(filename.c_str(), ios::out|ios::binary); Bitmap bm(pic, height, width); DPRINTF(PL111, "-- write out data into bmp\n"); // write out frame buffer data for (int i = height -1; i >= 0; --i) { for (int j = 0; j< width; ++j) { uint32_t pixel = frameBuffer[i*width + j]; pic.write(reinterpret_cast(&pixel), sizeof(uint32_t)); DPRINTF(PL111, " write pixel data %#x at addr %#x\n", pixel, i*width + j); } } pic.close(); } void Pl111::serialize(std::ostream &os) { DPRINTF(PL111, "Serializing ARM PL111\n"); uint32_t lcdTiming0_serial = lcdTiming0; SERIALIZE_SCALAR(lcdTiming0_serial); uint32_t lcdTiming1_serial = lcdTiming1; SERIALIZE_SCALAR(lcdTiming1_serial); uint32_t lcdTiming2_serial = lcdTiming2; SERIALIZE_SCALAR(lcdTiming2_serial); uint32_t lcdTiming3_serial = lcdTiming3; SERIALIZE_SCALAR(lcdTiming3_serial); SERIALIZE_SCALAR(lcdUpbase); SERIALIZE_SCALAR(lcdLpbase); uint32_t lcdControl_serial = lcdControl; SERIALIZE_SCALAR(lcdControl_serial); uint8_t lcdImsc_serial = lcdImsc; SERIALIZE_SCALAR(lcdImsc_serial); uint8_t lcdRis_serial = lcdRis; SERIALIZE_SCALAR(lcdRis_serial); uint8_t lcdMis_serial = lcdMis; SERIALIZE_SCALAR(lcdMis_serial); uint8_t lcdIcr_serial = lcdIcr; SERIALIZE_SCALAR(lcdIcr_serial); SERIALIZE_ARRAY(lcdPalette, LcdPaletteSize); SERIALIZE_ARRAY(cursorImage, CrsrImageSize); SERIALIZE_SCALAR(clcdCrsrCtrl); SERIALIZE_SCALAR(clcdCrsrConfig); SERIALIZE_SCALAR(clcdCrsrPalette0); SERIALIZE_SCALAR(clcdCrsrPalette1); SERIALIZE_SCALAR(clcdCrsrXY); SERIALIZE_SCALAR(clcdCrsrClip); uint8_t clcdCrsrImsc_serial = clcdCrsrImsc; SERIALIZE_SCALAR(clcdCrsrImsc_serial); uint8_t clcdCrsrIcr_serial = clcdCrsrIcr; SERIALIZE_SCALAR(clcdCrsrIcr_serial); uint8_t clcdCrsrRis_serial = clcdCrsrRis; SERIALIZE_SCALAR(clcdCrsrRis_serial); uint8_t clcdCrsrMis_serial = clcdCrsrMis; SERIALIZE_SCALAR(clcdCrsrMis_serial); SERIALIZE_SCALAR(clock); SERIALIZE_SCALAR(height); SERIALIZE_SCALAR(width); SERIALIZE_ARRAY(dmaBuffer, height*width); SERIALIZE_ARRAY(frameBuffer, height*width); SERIALIZE_SCALAR(startTime); SERIALIZE_SCALAR(startAddr); SERIALIZE_SCALAR(maxAddr); SERIALIZE_SCALAR(curAddr); SERIALIZE_SCALAR(waterMark); SERIALIZE_SCALAR(dmaPendingNum); } void Pl111::unserialize(Checkpoint *cp, const std::string §ion) { DPRINTF(PL111, "Unserializing ARM PL111\n"); uint32_t lcdTiming0_serial; UNSERIALIZE_SCALAR(lcdTiming0_serial); lcdTiming0 = lcdTiming0_serial; uint32_t lcdTiming1_serial; UNSERIALIZE_SCALAR(lcdTiming1_serial); lcdTiming1 = lcdTiming1_serial; uint32_t lcdTiming2_serial; UNSERIALIZE_SCALAR(lcdTiming2_serial); lcdTiming2 = lcdTiming2_serial; uint32_t lcdTiming3_serial; UNSERIALIZE_SCALAR(lcdTiming3_serial); lcdTiming3 = lcdTiming3_serial; UNSERIALIZE_SCALAR(lcdUpbase); UNSERIALIZE_SCALAR(lcdLpbase); uint32_t lcdControl_serial; UNSERIALIZE_SCALAR(lcdControl_serial); lcdControl = lcdControl_serial; uint8_t lcdImsc_serial; UNSERIALIZE_SCALAR(lcdImsc_serial); lcdImsc = lcdImsc_serial; uint8_t lcdRis_serial; UNSERIALIZE_SCALAR(lcdRis_serial); lcdRis = lcdRis_serial; uint8_t lcdMis_serial; UNSERIALIZE_SCALAR(lcdMis_serial); lcdMis = lcdMis_serial; uint8_t lcdIcr_serial; UNSERIALIZE_SCALAR(lcdIcr_serial); lcdIcr = lcdIcr_serial; UNSERIALIZE_ARRAY(lcdPalette, LcdPaletteSize); UNSERIALIZE_ARRAY(cursorImage, CrsrImageSize); UNSERIALIZE_SCALAR(clcdCrsrCtrl); UNSERIALIZE_SCALAR(clcdCrsrConfig); UNSERIALIZE_SCALAR(clcdCrsrPalette0); UNSERIALIZE_SCALAR(clcdCrsrPalette1); UNSERIALIZE_SCALAR(clcdCrsrXY); UNSERIALIZE_SCALAR(clcdCrsrClip); uint8_t clcdCrsrImsc_serial; UNSERIALIZE_SCALAR(clcdCrsrImsc_serial); clcdCrsrImsc = clcdCrsrImsc_serial; uint8_t clcdCrsrIcr_serial; UNSERIALIZE_SCALAR(clcdCrsrIcr_serial); clcdCrsrIcr = clcdCrsrIcr_serial; uint8_t clcdCrsrRis_serial; UNSERIALIZE_SCALAR(clcdCrsrRis_serial); clcdCrsrRis = clcdCrsrRis_serial; uint8_t clcdCrsrMis_serial; UNSERIALIZE_SCALAR(clcdCrsrMis_serial); clcdCrsrMis = clcdCrsrMis_serial; UNSERIALIZE_SCALAR(clock); UNSERIALIZE_SCALAR(height); UNSERIALIZE_SCALAR(width); UNSERIALIZE_ARRAY(dmaBuffer, height*width); UNSERIALIZE_ARRAY(frameBuffer, height*width); UNSERIALIZE_SCALAR(startTime); UNSERIALIZE_SCALAR(startAddr); UNSERIALIZE_SCALAR(maxAddr); UNSERIALIZE_SCALAR(curAddr); UNSERIALIZE_SCALAR(waterMark); UNSERIALIZE_SCALAR(dmaPendingNum); } void Pl111::generateInterrupt() { DPRINTF(PL111, "Generate Interrupt: lcdImsc=0x%x lcdRis=0x%x lcdMis=0x%x\n", lcdImsc, lcdRis, lcdMis); lcdMis = lcdImsc & lcdRis; if (lcdMis.ffufie || lcdMis.nbupie || lcdMis.vtcpie || lcdMis.ahmeie) { gic->sendInt(intNum); DPRINTF(PL111, " -- Generated\n"); } } void Pl111::addressRanges(AddrRangeList& range_list) { range_list.clear(); range_list.push_back(RangeSize(pioAddr, pioSize)); } Pl111 * Pl111Params::create() { return new Pl111(this); } // bitmap class ctor Bitmap::Bitmap(std::fstream& bmp, uint16_t h, uint16_t w) { Magic magic = {{'B','M'}}; Header header = {sizeof(Color)*w*h , 0, 0, 54}; Info info = {sizeof(Info), w, h, 1, sizeof(Color)*8, 0, ( sizeof(Color) *(w*h) ), 1, 1, 0, 0}; bmp.write(reinterpret_cast(&magic), sizeof(magic)); bmp.write(reinterpret_cast(&header), sizeof(header)); bmp.write(reinterpret_cast(&info), sizeof(info)); }