/* * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_THREAD_CONTEXT_HH__ #define __CPU_THREAD_CONTEXT_HH__ #include #include #include "arch/registers.hh" #include "arch/types.hh" #include "base/types.hh" #include "config/full_system.hh" #include "config/the_isa.hh" // @todo: Figure out a more architecture independent way to obtain the ITB and // DTB pointers. namespace TheISA { class TLB; } class BaseCPU; class Checkpoint; class EndQuiesceEvent; class TranslatingPort; class FunctionalPort; class VirtualPort; class Process; class System; namespace TheISA { namespace Kernel { class Statistics; }; }; /** * ThreadContext is the external interface to all thread state for * anything outside of the CPU. It provides all accessor methods to * state that might be needed by external objects, ranging from * register values to things such as kernel stats. It is an abstract * base class; the CPU can create its own ThreadContext by either * deriving from it, or using the templated ProxyThreadContext. * * The ThreadContext is slightly different than the ExecContext. The * ThreadContext provides access to an individual thread's state; an * ExecContext provides ISA access to the CPU (meaning it is * implicitly multithreaded on SMT systems). Additionally the * ThreadState is an abstract class that exactly defines the * interface; the ExecContext is a more implicit interface that must * be implemented so that the ISA can access whatever state it needs. */ class ThreadContext { protected: typedef TheISA::MachInst MachInst; typedef TheISA::IntReg IntReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; public: enum Status { /// Running. Instructions should be executed only when /// the context is in this state. Active, /// Temporarily inactive. Entered while waiting for /// synchronization, etc. Suspended, /// Permanently shut down. Entered when target executes /// m5exit pseudo-instruction. When all contexts enter /// this state, the simulation will terminate. Halted }; virtual ~ThreadContext() { }; virtual BaseCPU *getCpuPtr() = 0; virtual int cpuId() = 0; virtual int threadId() = 0; virtual void setThreadId(int id) = 0; virtual int contextId() = 0; virtual void setContextId(int id) = 0; virtual TheISA::TLB *getITBPtr() = 0; virtual TheISA::TLB *getDTBPtr() = 0; virtual System *getSystemPtr() = 0; #if FULL_SYSTEM virtual TheISA::Kernel::Statistics *getKernelStats() = 0; virtual FunctionalPort *getPhysPort() = 0; virtual VirtualPort *getVirtPort() = 0; virtual void connectMemPorts(ThreadContext *tc) = 0; #else virtual TranslatingPort *getMemPort() = 0; virtual Process *getProcessPtr() = 0; #endif virtual Status status() const = 0; virtual void setStatus(Status new_status) = 0; /// Set the status to Active. Optional delay indicates number of /// cycles to wait before beginning execution. virtual void activate(int delay = 1) = 0; /// Set the status to Suspended. virtual void suspend(int delay = 0) = 0; /// Set the status to Halted. virtual void halt(int delay = 0) = 0; #if FULL_SYSTEM virtual void dumpFuncProfile() = 0; #endif virtual void takeOverFrom(ThreadContext *old_context) = 0; virtual void regStats(const std::string &name) = 0; virtual void serialize(std::ostream &os) = 0; virtual void unserialize(Checkpoint *cp, const std::string §ion) = 0; #if FULL_SYSTEM virtual EndQuiesceEvent *getQuiesceEvent() = 0; // Not necessarily the best location for these... // Having an extra function just to read these is obnoxious virtual Tick readLastActivate() = 0; virtual Tick readLastSuspend() = 0; virtual void profileClear() = 0; virtual void profileSample() = 0; #endif virtual void copyArchRegs(ThreadContext *tc) = 0; virtual void clearArchRegs() = 0; // // New accessors for new decoder. // virtual uint64_t readIntReg(int reg_idx) = 0; virtual FloatReg readFloatReg(int reg_idx) = 0; virtual FloatRegBits readFloatRegBits(int reg_idx) = 0; virtual void setIntReg(int reg_idx, uint64_t val) = 0; virtual void setFloatReg(int reg_idx, FloatReg val) = 0; virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0; virtual TheISA::PCState pcState() = 0; virtual void pcState(const TheISA::PCState &val) = 0; virtual Addr instAddr() = 0; virtual Addr nextInstAddr() = 0; virtual MicroPC microPC() = 0; virtual MiscReg readMiscRegNoEffect(int misc_reg) = 0; virtual MiscReg readMiscReg(int misc_reg) = 0; virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0; virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0; virtual int flattenIntIndex(int reg) = 0; virtual int flattenFloatIndex(int reg) = 0; virtual uint64_t readRegOtherThread(int misc_reg, ThreadID tid) { return 0; } virtual void setRegOtherThread(int misc_reg, const MiscReg &val, ThreadID tid) { } // Also not necessarily the best location for these two. Hopefully will go // away once we decide upon where st cond failures goes. virtual unsigned readStCondFailures() = 0; virtual void setStCondFailures(unsigned sc_failures) = 0; // Only really makes sense for old CPU model. Still could be useful though. virtual bool misspeculating() = 0; #if !FULL_SYSTEM // Same with st cond failures. virtual Counter readFuncExeInst() = 0; virtual void syscall(int64_t callnum) = 0; // This function exits the thread context in the CPU and returns // 1 if the CPU has no more active threads (meaning it's OK to exit); // Used in syscall-emulation mode when a thread calls the exit syscall. virtual int exit() { return 1; }; #endif /** function to compare two thread contexts (for debugging) */ static void compare(ThreadContext *one, ThreadContext *two); }; /** * ProxyThreadContext class that provides a way to implement a * ThreadContext without having to derive from it. ThreadContext is an * abstract class, so anything that derives from it and uses its * interface will pay the overhead of virtual function calls. This * class is created to enable a user-defined Thread object to be used * wherever ThreadContexts are used, without paying the overhead of * virtual function calls when it is used by itself. See * simple_thread.hh for an example of this. */ template class ProxyThreadContext : public ThreadContext { public: ProxyThreadContext(TC *actual_tc) { actualTC = actual_tc; } private: TC *actualTC; public: BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); } int cpuId() { return actualTC->cpuId(); } int threadId() { return actualTC->threadId(); } void setThreadId(int id) { return actualTC->setThreadId(id); } int contextId() { return actualTC->contextId(); } void setContextId(int id) { actualTC->setContextId(id); } TheISA::TLB *getITBPtr() { return actualTC->getITBPtr(); } TheISA::TLB *getDTBPtr() { return actualTC->getDTBPtr(); } System *getSystemPtr() { return actualTC->getSystemPtr(); } #if FULL_SYSTEM TheISA::Kernel::Statistics *getKernelStats() { return actualTC->getKernelStats(); } FunctionalPort *getPhysPort() { return actualTC->getPhysPort(); } VirtualPort *getVirtPort() { return actualTC->getVirtPort(); } void connectMemPorts(ThreadContext *tc) { actualTC->connectMemPorts(tc); } #else TranslatingPort *getMemPort() { return actualTC->getMemPort(); } Process *getProcessPtr() { return actualTC->getProcessPtr(); } #endif Status status() const { return actualTC->status(); } void setStatus(Status new_status) { actualTC->setStatus(new_status); } /// Set the status to Active. Optional delay indicates number of /// cycles to wait before beginning execution. void activate(int delay = 1) { actualTC->activate(delay); } /// Set the status to Suspended. void suspend(int delay = 0) { actualTC->suspend(); } /// Set the status to Halted. void halt(int delay = 0) { actualTC->halt(); } #if FULL_SYSTEM void dumpFuncProfile() { actualTC->dumpFuncProfile(); } #endif void takeOverFrom(ThreadContext *oldContext) { actualTC->takeOverFrom(oldContext); } void regStats(const std::string &name) { actualTC->regStats(name); } void serialize(std::ostream &os) { actualTC->serialize(os); } void unserialize(Checkpoint *cp, const std::string §ion) { actualTC->unserialize(cp, section); } #if FULL_SYSTEM EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); } Tick readLastActivate() { return actualTC->readLastActivate(); } Tick readLastSuspend() { return actualTC->readLastSuspend(); } void profileClear() { return actualTC->profileClear(); } void profileSample() { return actualTC->profileSample(); } #endif // @todo: Do I need this? void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); } void clearArchRegs() { actualTC->clearArchRegs(); } // // New accessors for new decoder. // uint64_t readIntReg(int reg_idx) { return actualTC->readIntReg(reg_idx); } FloatReg readFloatReg(int reg_idx) { return actualTC->readFloatReg(reg_idx); } FloatRegBits readFloatRegBits(int reg_idx) { return actualTC->readFloatRegBits(reg_idx); } void setIntReg(int reg_idx, uint64_t val) { actualTC->setIntReg(reg_idx, val); } void setFloatReg(int reg_idx, FloatReg val) { actualTC->setFloatReg(reg_idx, val); } void setFloatRegBits(int reg_idx, FloatRegBits val) { actualTC->setFloatRegBits(reg_idx, val); } TheISA::PCState pcState() { return actualTC->pcState(); } void pcState(const TheISA::PCState &val) { actualTC->pcState(val); } Addr instAddr() { return actualTC->instAddr(); } Addr nextInstAddr() { return actualTC->nextInstAddr(); } MicroPC microPC() { return actualTC->microPC(); } bool readPredicate() { return actualTC->readPredicate(); } void setPredicate(bool val) { actualTC->setPredicate(val); } MiscReg readMiscRegNoEffect(int misc_reg) { return actualTC->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg) { return actualTC->readMiscReg(misc_reg); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val) { return actualTC->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val) { return actualTC->setMiscReg(misc_reg, val); } int flattenIntIndex(int reg) { return actualTC->flattenIntIndex(reg); } int flattenFloatIndex(int reg) { return actualTC->flattenFloatIndex(reg); } unsigned readStCondFailures() { return actualTC->readStCondFailures(); } void setStCondFailures(unsigned sc_failures) { actualTC->setStCondFailures(sc_failures); } // @todo: Fix this! bool misspeculating() { return actualTC->misspeculating(); } #if !FULL_SYSTEM void syscall(int64_t callnum) { actualTC->syscall(callnum); } Counter readFuncExeInst() { return actualTC->readFuncExeInst(); } #endif }; #endif