/* * Copyright (c) 2011-2012, 2016-2018 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_THREAD_CONTEXT_HH__ #define __CPU_THREAD_CONTEXT_HH__ #include #include #include "arch/registers.hh" #include "arch/types.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/reg_class.hh" // @todo: Figure out a more architecture independent way to obtain the ITB and // DTB pointers. namespace TheISA { class ISA; class Decoder; } class BaseCPU; class BaseTLB; class CheckerCPU; class Checkpoint; class EndQuiesceEvent; class PortProxy; class Process; class System; namespace Kernel { class Statistics; } /** * ThreadContext is the external interface to all thread state for * anything outside of the CPU. It provides all accessor methods to * state that might be needed by external objects, ranging from * register values to things such as kernel stats. It is an abstract * base class; the CPU can create its own ThreadContext by * deriving from it. * * The ThreadContext is slightly different than the ExecContext. The * ThreadContext provides access to an individual thread's state; an * ExecContext provides ISA access to the CPU (meaning it is * implicitly multithreaded on SMT systems). Additionally the * ThreadState is an abstract class that exactly defines the * interface; the ExecContext is a more implicit interface that must * be implemented so that the ISA can access whatever state it needs. */ class ThreadContext { protected: typedef TheISA::MachInst MachInst; using VecRegContainer = TheISA::VecRegContainer; using VecElem = TheISA::VecElem; using VecPredRegContainer = TheISA::VecPredRegContainer; public: enum Status { /// Running. Instructions should be executed only when /// the context is in this state. Active, /// Temporarily inactive. Entered while waiting for /// synchronization, etc. Suspended, /// Trying to exit and waiting for an event to completely exit. /// Entered when target executes an exit syscall. Halting, /// Permanently shut down. Entered when target executes /// m5exit pseudo-instruction. When all contexts enter /// this state, the simulation will terminate. Halted }; virtual ~ThreadContext() { }; virtual BaseCPU *getCpuPtr() = 0; virtual int cpuId() const = 0; virtual uint32_t socketId() const = 0; virtual int threadId() const = 0; virtual void setThreadId(int id) = 0; virtual ContextID contextId() const = 0; virtual void setContextId(ContextID id) = 0; virtual BaseTLB *getITBPtr() = 0; virtual BaseTLB *getDTBPtr() = 0; virtual CheckerCPU *getCheckerCpuPtr() = 0; virtual TheISA::ISA *getIsaPtr() = 0; virtual TheISA::Decoder *getDecoderPtr() = 0; virtual System *getSystemPtr() = 0; virtual ::Kernel::Statistics *getKernelStats() = 0; virtual PortProxy &getPhysProxy() = 0; virtual PortProxy &getVirtProxy() = 0; /** * Initialise the physical and virtual port proxies and tie them to * the data port of the CPU. * * tc ThreadContext for the virtual-to-physical translation */ virtual void initMemProxies(ThreadContext *tc) = 0; virtual PortProxy &getMemProxy() = 0; virtual Process *getProcessPtr() = 0; virtual void setProcessPtr(Process *p) = 0; virtual Status status() const = 0; virtual void setStatus(Status new_status) = 0; /// Set the status to Active. virtual void activate() = 0; /// Set the status to Suspended. virtual void suspend() = 0; /// Set the status to Halted. virtual void halt() = 0; /// Quiesce thread context void quiesce(); /// Quiesce, suspend, and schedule activate at resume void quiesceTick(Tick resume); virtual void dumpFuncProfile() = 0; virtual void takeOverFrom(ThreadContext *old_context) = 0; virtual void regStats(const std::string &name) = 0; virtual EndQuiesceEvent *getQuiesceEvent() = 0; // Not necessarily the best location for these... // Having an extra function just to read these is obnoxious virtual Tick readLastActivate() = 0; virtual Tick readLastSuspend() = 0; virtual void profileClear() = 0; virtual void profileSample() = 0; virtual void copyArchRegs(ThreadContext *tc) = 0; virtual void clearArchRegs() = 0; // // New accessors for new decoder. // virtual RegVal readIntReg(RegIndex reg_idx) const = 0; virtual RegVal readFloatReg(RegIndex reg_idx) const = 0; virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0; virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0; /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ virtual ConstVecLane8 readVec8BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 16bit operand. */ virtual ConstVecLane16 readVec16BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 32bit operand. */ virtual ConstVecLane32 readVec32BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 64bit operand. */ virtual ConstVecLane64 readVec64BitLaneReg(const RegId& reg) const = 0; /** Write a lane of the destination vector register. */ virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; /** @} */ virtual const VecElem& readVecElem(const RegId& reg) const = 0; virtual const VecPredRegContainer& readVecPredReg(const RegId& reg) const = 0; virtual VecPredRegContainer& getWritableVecPredReg(const RegId& reg) = 0; virtual RegVal readCCReg(RegIndex reg_idx) const = 0; virtual void setIntReg(RegIndex reg_idx, RegVal val) = 0; virtual void setFloatReg(RegIndex reg_idx, RegVal val) = 0; virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0; virtual void setVecElem(const RegId& reg, const VecElem& val) = 0; virtual void setVecPredReg(const RegId& reg, const VecPredRegContainer& val) = 0; virtual void setCCReg(RegIndex reg_idx, RegVal val) = 0; virtual TheISA::PCState pcState() const = 0; virtual void pcState(const TheISA::PCState &val) = 0; void setNPC(Addr val) { TheISA::PCState pc_state = pcState(); pc_state.setNPC(val); pcState(pc_state); } virtual void pcStateNoRecord(const TheISA::PCState &val) = 0; virtual Addr instAddr() const = 0; virtual Addr nextInstAddr() const = 0; virtual MicroPC microPC() const = 0; virtual RegVal readMiscRegNoEffect(RegIndex misc_reg) const = 0; virtual RegVal readMiscReg(RegIndex misc_reg) = 0; virtual void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) = 0; virtual void setMiscReg(RegIndex misc_reg, RegVal val) = 0; virtual RegId flattenRegId(const RegId& regId) const = 0; // Also not necessarily the best location for these two. Hopefully will go // away once we decide upon where st cond failures goes. virtual unsigned readStCondFailures() const = 0; virtual void setStCondFailures(unsigned sc_failures) = 0; // Same with st cond failures. virtual Counter readFuncExeInst() const = 0; virtual void syscall(int64_t callnum, Fault *fault) = 0; // This function exits the thread context in the CPU and returns // 1 if the CPU has no more active threads (meaning it's OK to exit); // Used in syscall-emulation mode when a thread calls the exit syscall. virtual int exit() { return 1; }; /** function to compare two thread contexts (for debugging) */ static void compare(ThreadContext *one, ThreadContext *two); /** @{ */ /** * Flat register interfaces * * Some architectures have different registers visible in * different modes. Such architectures "flatten" a register (see * flattenRegId()) to map it into the * gem5 register file. This interface provides a flat interface to * the underlying register file, which allows for example * serialization code to access all registers. */ virtual RegVal readIntRegFlat(RegIndex idx) const = 0; virtual void setIntRegFlat(RegIndex idx, RegVal val) = 0; virtual RegVal readFloatRegFlat(RegIndex idx) const = 0; virtual void setFloatRegFlat(RegIndex idx, RegVal val) = 0; virtual const VecRegContainer& readVecRegFlat(RegIndex idx) const = 0; virtual VecRegContainer& getWritableVecRegFlat(RegIndex idx) = 0; virtual void setVecRegFlat(RegIndex idx, const VecRegContainer& val) = 0; virtual const VecElem& readVecElemFlat(RegIndex idx, const ElemIndex& elemIdx) const = 0; virtual void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx, const VecElem& val) = 0; virtual const VecPredRegContainer & readVecPredRegFlat(RegIndex idx) const = 0; virtual VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) = 0; virtual void setVecPredRegFlat(RegIndex idx, const VecPredRegContainer& val) = 0; virtual RegVal readCCRegFlat(RegIndex idx) const = 0; virtual void setCCRegFlat(RegIndex idx, RegVal val) = 0; /** @} */ }; /** @{ */ /** * Thread context serialization helpers * * These helper functions provide a way to the data in a * ThreadContext. They are provided as separate helper function since * implementing them as members of the ThreadContext interface would * be confusing when the ThreadContext is exported via a proxy. */ void serialize(const ThreadContext &tc, CheckpointOut &cp); void unserialize(ThreadContext &tc, CheckpointIn &cp); /** @} */ /** * Copy state between thread contexts in preparation for CPU handover. * * @note This method modifies the old thread contexts as well as the * new thread context. The old thread context will have its quiesce * event descheduled if it is scheduled and its status set to halted. * * @param new_tc Destination ThreadContext. * @param old_tc Source ThreadContext. */ void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc); #endif