/* * Copyright (c) 2001-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert */ #ifndef __CPU_SIMPLE_THREAD_HH__ #define __CPU_SIMPLE_THREAD_HH__ #include "arch/isa.hh" #include "arch/isa_traits.hh" #include "arch/regfile.hh" #include "arch/tlb.hh" #include "base/types.hh" #include "config/full_system.hh" #include "cpu/thread_context.hh" #include "cpu/thread_state.hh" #include "mem/request.hh" #include "sim/byteswap.hh" #include "sim/eventq.hh" #include "sim/serialize.hh" class BaseCPU; #if FULL_SYSTEM #include "sim/system.hh" class FunctionProfile; class ProfileNode; class FunctionalPort; class PhysicalPort; namespace TheISA { namespace Kernel { class Statistics; }; }; #else // !FULL_SYSTEM #include "sim/process.hh" #include "mem/page_table.hh" class TranslatingPort; #endif // FULL_SYSTEM /** * The SimpleThread object provides a combination of the ThreadState * object and the ThreadContext interface. It implements the * ThreadContext interface so that a ProxyThreadContext class can be * made using SimpleThread as the template parameter (see * thread_context.hh). It adds to the ThreadState object by adding all * the objects needed for simple functional execution, including a * simple architectural register file, and pointers to the ITB and DTB * in full system mode. For CPU models that do not need more advanced * ways to hold state (i.e. a separate physical register file, or * separate fetch and commit PC's), this SimpleThread class provides * all the necessary state for full architecture-level functional * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for * examples. */ class SimpleThread : public ThreadState { protected: typedef TheISA::RegFile RegFile; typedef TheISA::MachInst MachInst; typedef TheISA::MiscReg MiscReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; public: typedef ThreadContext::Status Status; protected: RegFile regs; // correct-path register context TheISA::ISA isa; // one "instance" of the current ISA. public: // pointer to CPU associated with this SimpleThread BaseCPU *cpu; ProxyThreadContext *tc; System *system; TheISA::TLB *itb; TheISA::TLB *dtb; // constructor: initialize SimpleThread from given process structure #if FULL_SYSTEM SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, TheISA::TLB *_itb, TheISA::TLB *_dtb, bool use_kernel_stats = true); #else SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid); #endif SimpleThread(); virtual ~SimpleThread(); virtual void takeOverFrom(ThreadContext *oldContext); void regStats(const std::string &name); void copyTC(ThreadContext *context); void copyState(ThreadContext *oldContext); void serialize(std::ostream &os); void unserialize(Checkpoint *cp, const std::string §ion); /*************************************************************** * SimpleThread functions to provide CPU with access to various * state. **************************************************************/ /** Returns the pointer to this SimpleThread's ThreadContext. Used * when a ThreadContext must be passed to objects outside of the * CPU. */ ThreadContext *getTC() { return tc; } void demapPage(Addr vaddr, uint64_t asn) { itb->demapPage(vaddr, asn); dtb->demapPage(vaddr, asn); } void demapInstPage(Addr vaddr, uint64_t asn) { itb->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { dtb->demapPage(vaddr, asn); } #if FULL_SYSTEM int getInstAsid() { return isa.instAsid(); } int getDataAsid() { return isa.dataAsid(); } void dumpFuncProfile(); Fault hwrei(); bool simPalCheck(int palFunc); #endif /******************************************* * ThreadContext interface functions. ******************************************/ BaseCPU *getCpuPtr() { return cpu; } TheISA::TLB *getITBPtr() { return itb; } TheISA::TLB *getDTBPtr() { return dtb; } System *getSystemPtr() { return system; } #if FULL_SYSTEM FunctionalPort *getPhysPort() { return physPort; } /** Return a virtual port. This port cannot be cached locally in an object. * After a CPU switch it may point to the wrong memory object which could * mean stale data. */ VirtualPort *getVirtPort() { return virtPort; } #endif Status status() const { return _status; } void setStatus(Status newStatus) { _status = newStatus; } /// Set the status to Active. Optional delay indicates number of /// cycles to wait before beginning execution. void activate(int delay = 1); /// Set the status to Suspended. void suspend(); /// Set the status to Halted. void halt(); virtual bool misspeculating(); Fault instRead(RequestPtr &req) { panic("instRead not implemented"); // return funcPhysMem->read(req, inst); return NoFault; } void copyArchRegs(ThreadContext *tc); void clearArchRegs() { regs.clear(); } // // New accessors for new decoder. // uint64_t readIntReg(int reg_idx) { int flatIndex = isa.flattenIntIndex(reg_idx); return regs.readIntReg(flatIndex); } FloatReg readFloatReg(int reg_idx) { int flatIndex = isa.flattenFloatIndex(reg_idx); return regs.readFloatReg(flatIndex); } FloatRegBits readFloatRegBits(int reg_idx) { int flatIndex = isa.flattenFloatIndex(reg_idx); return regs.readFloatRegBits(flatIndex); } void setIntReg(int reg_idx, uint64_t val) { int flatIndex = isa.flattenIntIndex(reg_idx); regs.setIntReg(flatIndex, val); } void setFloatReg(int reg_idx, FloatReg val) { int flatIndex = isa.flattenFloatIndex(reg_idx); regs.setFloatReg(flatIndex, val); } void setFloatRegBits(int reg_idx, FloatRegBits val) { int flatIndex = isa.flattenFloatIndex(reg_idx); regs.setFloatRegBits(flatIndex, val); } uint64_t readPC() { return regs.readPC(); } void setPC(uint64_t val) { regs.setPC(val); } uint64_t readMicroPC() { return microPC; } void setMicroPC(uint64_t val) { microPC = val; } uint64_t readNextPC() { return regs.readNextPC(); } void setNextPC(uint64_t val) { regs.setNextPC(val); } uint64_t readNextMicroPC() { return nextMicroPC; } void setNextMicroPC(uint64_t val) { nextMicroPC = val; } uint64_t readNextNPC() { return regs.readNextNPC(); } void setNextNPC(uint64_t val) { regs.setNextNPC(val); } MiscReg readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) { return isa.readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg, ThreadID tid = 0) { return isa.readMiscReg(misc_reg, tc); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) { return isa.setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) { return isa.setMiscReg(misc_reg, val, tc); } int flattenIntIndex(int reg) { return isa.flattenIntIndex(reg); } int flattenFloatIndex(int reg) { return isa.flattenFloatIndex(reg); } unsigned readStCondFailures() { return storeCondFailures; } void setStCondFailures(unsigned sc_failures) { storeCondFailures = sc_failures; } #if !FULL_SYSTEM void syscall(int64_t callnum) { process->syscall(callnum, tc); } #endif }; // for non-speculative execution context, spec_mode is always false inline bool SimpleThread::misspeculating() { return false; } #endif // __CPU_CPU_EXEC_CONTEXT_HH__