/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #ifndef __CPU_SIMPLE_TIMING_HH__ #define __CPU_SIMPLE_TIMING_HH__ #include "cpu/simple/base.hh" #include "cpu/translation.hh" #include "params/TimingSimpleCPU.hh" class TimingSimpleCPU : public BaseSimpleCPU { public: TimingSimpleCPU(TimingSimpleCPUParams * params); virtual ~TimingSimpleCPU(); virtual void init(); public: Event *drainEvent; private: /* * If an access needs to be broken into fragments, currently at most two, * the the following two classes are used as the sender state of the * packets so the CPU can keep track of everything. In the main packet * sender state, there's an array with a spot for each fragment. If a * fragment has already been accepted by the CPU, aka isn't waiting for * a retry, it's pointer is NULL. After each fragment has successfully * been processed, the "outstanding" counter is decremented. Once the * count is zero, the entire larger access is complete. */ class SplitMainSenderState : public Packet::SenderState { public: int outstanding; PacketPtr fragments[2]; int getPendingFragment() { if (fragments[0]) { return 0; } else if (fragments[1]) { return 1; } else { return -1; } } }; class SplitFragmentSenderState : public Packet::SenderState { public: SplitFragmentSenderState(PacketPtr _bigPkt, int _index) : bigPkt(_bigPkt), index(_index) {} PacketPtr bigPkt; int index; void clearFromParent() { SplitMainSenderState * main_send_state = dynamic_cast(bigPkt->senderState); main_send_state->fragments[index] = NULL; } }; class FetchTranslation : public BaseTLB::Translation { protected: TimingSimpleCPU *cpu; public: FetchTranslation(TimingSimpleCPU *_cpu) : cpu(_cpu) {} void markDelayed() {} void finish(Fault fault, RequestPtr req, ThreadContext *tc, BaseTLB::Mode mode) { cpu->sendFetch(fault, req, tc); } }; FetchTranslation fetchTranslation; void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read); void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req, uint8_t *data, bool read); void translationFault(Fault fault); void buildPacket(PacketPtr &pkt, RequestPtr req, bool read); void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2, RequestPtr req1, RequestPtr req2, RequestPtr req, uint8_t *data, bool read); bool handleReadPacket(PacketPtr pkt); // This function always implicitly uses dcache_pkt. bool handleWritePacket(); class CpuPort : public Port { protected: TimingSimpleCPU *cpu; Tick lat; public: CpuPort(const std::string &_name, TimingSimpleCPU *_cpu, Tick _lat) : Port(_name, _cpu), cpu(_cpu), lat(_lat), retryEvent(this) { } bool snoopRangeSent; protected: virtual Tick recvAtomic(PacketPtr pkt); virtual void recvFunctional(PacketPtr pkt); virtual void recvStatusChange(Status status); virtual void getDeviceAddressRanges(AddrRangeList &resp, bool &snoop) { resp.clear(); snoop = false; } struct TickEvent : public Event { PacketPtr pkt; TimingSimpleCPU *cpu; CpuPort *port; TickEvent(TimingSimpleCPU *_cpu) : cpu(_cpu) {} const char *description() const { return "Timing CPU tick"; } void schedule(PacketPtr _pkt, Tick t); }; EventWrapper retryEvent; }; class IcachePort : public CpuPort { public: IcachePort(TimingSimpleCPU *_cpu, Tick _lat) : CpuPort(_cpu->name() + "-iport", _cpu, _lat), tickEvent(_cpu) { } protected: virtual bool recvTiming(PacketPtr pkt); virtual void recvRetry(); struct ITickEvent : public TickEvent { ITickEvent(TimingSimpleCPU *_cpu) : TickEvent(_cpu) {} void process(); const char *description() const { return "Timing CPU icache tick"; } }; ITickEvent tickEvent; }; class DcachePort : public CpuPort { public: DcachePort(TimingSimpleCPU *_cpu, Tick _lat) : CpuPort(_cpu->name() + "-dport", _cpu, _lat), tickEvent(_cpu) { } virtual void setPeer(Port *port); protected: virtual bool recvTiming(PacketPtr pkt); virtual void recvRetry(); struct DTickEvent : public TickEvent { DTickEvent(TimingSimpleCPU *_cpu) : TickEvent(_cpu) {} void process(); const char *description() const { return "Timing CPU dcache tick"; } }; DTickEvent tickEvent; }; IcachePort icachePort; DcachePort dcachePort; PacketPtr ifetch_pkt; PacketPtr dcache_pkt; Tick previousTick; public: virtual Port *getPort(const std::string &if_name, int idx = -1); virtual void serialize(std::ostream &os); virtual void unserialize(Checkpoint *cp, const std::string §ion); virtual unsigned int drain(Event *drain_event); virtual void resume(); void switchOut(); void takeOverFrom(BaseCPU *oldCPU); virtual void activateContext(int thread_num, int delay); virtual void suspendContext(int thread_num); template Fault read(Addr addr, T &data, unsigned flags); Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags); template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); Fault writeBytes(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res); void fetch(); void sendFetch(Fault fault, RequestPtr req, ThreadContext *tc); void completeIfetch(PacketPtr ); void completeDataAccess(PacketPtr pkt); void advanceInst(Fault fault); /** * Print state of address in memory system via PrintReq (for * debugging). */ void printAddr(Addr a); /** * Finish a DTB translation. * @param state The DTB translation state. */ void finishTranslation(WholeTranslationState *state); private: // The backend for writeBytes and write. It's the same as writeBytes, but // doesn't make a copy of data. Fault writeTheseBytes(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res); typedef EventWrapper FetchEvent; FetchEvent fetchEvent; struct IprEvent : Event { Packet *pkt; TimingSimpleCPU *cpu; IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t); virtual void process(); virtual const char *description() const; }; void completeDrain(); }; #endif // __CPU_SIMPLE_TIMING_HH__