/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #include "arch/locked_mem.hh" #include "arch/utility.hh" #include "cpu/exetrace.hh" #include "cpu/simple/timing.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" #include "sim/builder.hh" #include "sim/system.hh" using namespace std; using namespace TheISA; Port * TimingSimpleCPU::getPort(const std::string &if_name, int idx) { if (if_name == "dcache_port") return &dcachePort; else if (if_name == "icache_port") return &icachePort; else panic("No Such Port\n"); } void TimingSimpleCPU::init() { BaseCPU::init(); #if FULL_SYSTEM for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; // initialize CPU, including PC TheISA::initCPU(tc, tc->readCpuId()); } #endif } Tick TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) { panic("TimingSimpleCPU doesn't expect recvAtomic callback!"); return curTick; } void TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) { //No internal storage to update, jusst return return; } void TimingSimpleCPU::CpuPort::recvStatusChange(Status status) { if (status == RangeChange) return; panic("TimingSimpleCPU doesn't expect recvStatusChange callback!"); } void TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t) { pkt = _pkt; Event::schedule(t); } TimingSimpleCPU::TimingSimpleCPU(Params *p) : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), cpu_id(p->cpu_id) { _status = Idle; ifetch_pkt = dcache_pkt = NULL; drainEvent = NULL; fetchEvent = NULL; previousTick = 0; changeState(SimObject::Running); } TimingSimpleCPU::~TimingSimpleCPU() { } void TimingSimpleCPU::serialize(ostream &os) { SimObject::State so_state = SimObject::getState(); SERIALIZE_ENUM(so_state); BaseSimpleCPU::serialize(os); } void TimingSimpleCPU::unserialize(Checkpoint *cp, const string §ion) { SimObject::State so_state; UNSERIALIZE_ENUM(so_state); BaseSimpleCPU::unserialize(cp, section); } unsigned int TimingSimpleCPU::drain(Event *drain_event) { // TimingSimpleCPU is ready to drain if it's not waiting for // an access to complete. if (status() == Idle || status() == Running || status() == SwitchedOut) { changeState(SimObject::Drained); return 0; } else { changeState(SimObject::Draining); drainEvent = drain_event; return 1; } } void TimingSimpleCPU::resume() { if (_status != SwitchedOut && _status != Idle) { assert(system->getMemoryMode() == System::Timing); // Delete the old event if it existed. if (fetchEvent) { if (fetchEvent->scheduled()) fetchEvent->deschedule(); delete fetchEvent; } fetchEvent = new EventWrapper(this, false); fetchEvent->schedule(curTick); } changeState(SimObject::Running); previousTick = curTick; } void TimingSimpleCPU::switchOut() { assert(status() == Running || status() == Idle); _status = SwitchedOut; numCycles += curTick - previousTick; // If we've been scheduled to resume but are then told to switch out, // we'll need to cancel it. if (fetchEvent && fetchEvent->scheduled()) fetchEvent->deschedule(); } void TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU); // if any of this CPU's ThreadContexts are active, mark the CPU as // running and schedule its tick event. for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; if (tc->status() == ThreadContext::Active && _status != Running) { _status = Running; break; } } if (_status != Running) { _status = Idle; } Port *peer; if (icachePort.getPeer() == NULL) { peer = oldCPU->getPort("icache_port")->getPeer(); icachePort.setPeer(peer); } else { peer = icachePort.getPeer(); } peer->setPeer(&icachePort); if (dcachePort.getPeer() == NULL) { peer = oldCPU->getPort("dcache_port")->getPeer(); dcachePort.setPeer(peer); } else { peer = dcachePort.getPeer(); } peer->setPeer(&dcachePort); } void TimingSimpleCPU::activateContext(int thread_num, int delay) { assert(thread_num == 0); assert(thread); assert(_status == Idle); notIdleFraction++; _status = Running; // kick things off by initiating the fetch of the next instruction fetchEvent = new EventWrapper(this, false); fetchEvent->schedule(curTick + cycles(delay)); } void TimingSimpleCPU::suspendContext(int thread_num) { assert(thread_num == 0); assert(thread); assert(_status == Running); // just change status to Idle... if status != Running, // completeInst() will not initiate fetch of next instruction. notIdleFraction--; _status = Idle; } template Fault TimingSimpleCPU::read(Addr addr, T &data, unsigned flags) { Request *req = new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(), cpu_id, /* thread ID */ 0); if (traceData) { traceData->setAddr(req->getVaddr()); } // translate to physical address Fault fault = thread->translateDataReadReq(req); // Now do the access. if (fault == NoFault) { PacketPtr pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast); pkt->dataDynamic(new T); if (!dcachePort.sendTiming(pkt)) { _status = DcacheRetry; dcache_pkt = pkt; } else { _status = DcacheWaitResponse; // memory system takes ownership of packet dcache_pkt = NULL; } } // This will need a new way to tell if it has a dcache attached. if (req->isUncacheable()) recordEvent("Uncached Read"); return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault TimingSimpleCPU::read(Addr addr, double &data, unsigned flags) { return read(addr, *(uint64_t*)&data, flags); } template<> Fault TimingSimpleCPU::read(Addr addr, float &data, unsigned flags) { return read(addr, *(uint32_t*)&data, flags); } template<> Fault TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) { return read(addr, (uint32_t&)data, flags); } template Fault TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { Request *req = new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(), cpu_id, /* thread ID */ 0); // translate to physical address Fault fault = thread->translateDataWriteReq(req); // Now do the access. if (fault == NoFault) { assert(dcache_pkt == NULL); dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast); dcache_pkt->allocate(); dcache_pkt->set(data); bool do_access = true; // flag to suppress cache access if (req->isLocked()) { do_access = TheISA::handleLockedWrite(thread, req); } if (do_access) { if (!dcachePort.sendTiming(dcache_pkt)) { _status = DcacheRetry; } else { _status = DcacheWaitResponse; // memory system takes ownership of packet dcache_pkt = NULL; } } } // This will need a new way to tell if it's hooked up to a cache or not. if (req->isUncacheable()) recordEvent("Uncached Write"); // If the write needs to have a fault on the access, consider calling // changeStatus() and changing it to "bad addr write" or something. return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault TimingSimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint64_t*)&data, addr, flags, res); } template<> Fault TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint32_t*)&data, addr, flags, res); } template<> Fault TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write((uint32_t)data, addr, flags, res); } void TimingSimpleCPU::fetch() { checkForInterrupts(); Request *ifetch_req = new Request(); ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0); Fault fault = setupFetchRequest(ifetch_req); ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast); ifetch_pkt->dataStatic(&inst); if (fault == NoFault) { if (!icachePort.sendTiming(ifetch_pkt)) { // Need to wait for retry _status = IcacheRetry; } else { // Need to wait for cache to respond _status = IcacheWaitResponse; // ownership of packet transferred to memory system ifetch_pkt = NULL; } } else { // fetch fault: advance directly to next instruction (fault handler) advanceInst(fault); } numCycles += curTick - previousTick; previousTick = curTick; } void TimingSimpleCPU::advanceInst(Fault fault) { advancePC(fault); if (_status == Running) { // kick off fetch of next instruction... callback from icache // response will cause that instruction to be executed, // keeping the CPU running. fetch(); } } void TimingSimpleCPU::completeIfetch(PacketPtr pkt) { // received a response from the icache: execute the received // instruction assert(pkt->result == Packet::Success); assert(_status == IcacheWaitResponse); _status = Running; delete pkt->req; delete pkt; numCycles += curTick - previousTick; previousTick = curTick; if (getState() == SimObject::Draining) { completeDrain(); return; } preExecute(); if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) { // load or store: just send to dcache Fault fault = curStaticInst->initiateAcc(this, traceData); if (_status != Running) { // instruction will complete in dcache response callback assert(_status == DcacheWaitResponse || _status == DcacheRetry); assert(fault == NoFault); } else { if (fault == NoFault) { // early fail on store conditional: complete now assert(dcache_pkt != NULL); fault = curStaticInst->completeAcc(dcache_pkt, this, traceData); delete dcache_pkt->req; delete dcache_pkt; dcache_pkt = NULL; } postExecute(); advanceInst(fault); } } else { // non-memory instruction: execute completely now Fault fault = curStaticInst->execute(this, traceData); postExecute(); advanceInst(fault); } } void TimingSimpleCPU::IcachePort::ITickEvent::process() { cpu->completeIfetch(pkt); } bool TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt) { if (pkt->isResponse()) { // delay processing of returned data until next CPU clock edge Tick time = pkt->req->getTime(); while (time < curTick) time += lat; if (time == curTick) cpu->completeIfetch(pkt); else tickEvent.schedule(pkt, time); return true; } else { //Snooping a Coherence Request, do nothing return true; } } void TimingSimpleCPU::IcachePort::recvRetry() { // we shouldn't get a retry unless we have a packet that we're // waiting to transmit assert(cpu->ifetch_pkt != NULL); assert(cpu->_status == IcacheRetry); PacketPtr tmp = cpu->ifetch_pkt; if (sendTiming(tmp)) { cpu->_status = IcacheWaitResponse; cpu->ifetch_pkt = NULL; } } void TimingSimpleCPU::completeDataAccess(PacketPtr pkt) { // received a response from the dcache: complete the load or store // instruction assert(pkt->result == Packet::Success); assert(_status == DcacheWaitResponse); _status = Running; numCycles += curTick - previousTick; previousTick = curTick; Fault fault = curStaticInst->completeAcc(pkt, this, traceData); if (pkt->isRead() && pkt->req->isLocked()) { TheISA::handleLockedRead(thread, pkt->req); } delete pkt->req; delete pkt; postExecute(); if (getState() == SimObject::Draining) { advancePC(fault); completeDrain(); return; } advanceInst(fault); } void TimingSimpleCPU::completeDrain() { DPRINTF(Config, "Done draining\n"); changeState(SimObject::Drained); drainEvent->process(); } bool TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt) { if (pkt->isResponse()) { // delay processing of returned data until next CPU clock edge Tick time = pkt->req->getTime(); while (time < curTick) time += lat; if (time == curTick) cpu->completeDataAccess(pkt); else tickEvent.schedule(pkt, time); return true; } else { //Snooping a coherence req, do nothing return true; } } void TimingSimpleCPU::DcachePort::DTickEvent::process() { cpu->completeDataAccess(pkt); } void TimingSimpleCPU::DcachePort::recvRetry() { // we shouldn't get a retry unless we have a packet that we're // waiting to transmit assert(cpu->dcache_pkt != NULL); assert(cpu->_status == DcacheRetry); PacketPtr tmp = cpu->dcache_pkt; if (sendTiming(tmp)) { cpu->_status = DcacheWaitResponse; // memory system takes ownership of packet cpu->dcache_pkt = NULL; } } //////////////////////////////////////////////////////////////////////// // // TimingSimpleCPU Simulation Object // BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU) Param max_insts_any_thread; Param max_insts_all_threads; Param max_loads_any_thread; Param max_loads_all_threads; Param progress_interval; SimObjectParam mem; SimObjectParam system; Param cpu_id; #if FULL_SYSTEM SimObjectParam itb; SimObjectParam dtb; Param profile; #else SimObjectParam workload; #endif // FULL_SYSTEM Param clock; Param defer_registration; Param width; Param function_trace; Param function_trace_start; Param simulate_stalls; END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU) BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU) INIT_PARAM(max_insts_any_thread, "terminate when any thread reaches this inst count"), INIT_PARAM(max_insts_all_threads, "terminate when all threads have reached this inst count"), INIT_PARAM(max_loads_any_thread, "terminate when any thread reaches this load count"), INIT_PARAM(max_loads_all_threads, "terminate when all threads have reached this load count"), INIT_PARAM(progress_interval, "Progress interval"), INIT_PARAM(mem, "memory"), INIT_PARAM(system, "system object"), INIT_PARAM(cpu_id, "processor ID"), #if FULL_SYSTEM INIT_PARAM(itb, "Instruction TLB"), INIT_PARAM(dtb, "Data TLB"), INIT_PARAM(profile, ""), #else INIT_PARAM(workload, "processes to run"), #endif // FULL_SYSTEM INIT_PARAM(clock, "clock speed"), INIT_PARAM(defer_registration, "defer system registration (for sampling)"), INIT_PARAM(width, "cpu width"), INIT_PARAM(function_trace, "Enable function trace"), INIT_PARAM(function_trace_start, "Cycle to start function trace"), INIT_PARAM(simulate_stalls, "Simulate cache stall cycles") END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU) CREATE_SIM_OBJECT(TimingSimpleCPU) { TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params(); params->name = getInstanceName(); params->numberOfThreads = 1; params->max_insts_any_thread = max_insts_any_thread; params->max_insts_all_threads = max_insts_all_threads; params->max_loads_any_thread = max_loads_any_thread; params->max_loads_all_threads = max_loads_all_threads; params->progress_interval = progress_interval; params->deferRegistration = defer_registration; params->clock = clock; params->functionTrace = function_trace; params->functionTraceStart = function_trace_start; params->mem = mem; params->system = system; params->cpu_id = cpu_id; #if FULL_SYSTEM params->itb = itb; params->dtb = dtb; params->profile = profile; #else params->process = workload; #endif TimingSimpleCPU *cpu = new TimingSimpleCPU(params); return cpu; } REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)