/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #include "arch/locked_mem.hh" #include "arch/utility.hh" #include "cpu/exetrace.hh" #include "cpu/simple/atomic.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" #include "sim/builder.hh" #include "sim/system.hh" using namespace std; using namespace TheISA; AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c) { } void AtomicSimpleCPU::TickEvent::process() { cpu->tick(); } const char * AtomicSimpleCPU::TickEvent::description() { return "AtomicSimpleCPU tick event"; } Port * AtomicSimpleCPU::getPort(const std::string &if_name, int idx) { if (if_name == "dcache_port") return &dcachePort; else if (if_name == "icache_port") return &icachePort; else panic("No Such Port\n"); } void AtomicSimpleCPU::init() { //Create Memory Ports (conect them up) // Port *mem_dport = mem->getPort(""); // dcachePort.setPeer(mem_dport); // mem_dport->setPeer(&dcachePort); // Port *mem_iport = mem->getPort(""); // icachePort.setPeer(mem_iport); // mem_iport->setPeer(&icachePort); BaseCPU::init(); #if FULL_SYSTEM for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; // initialize CPU, including PC TheISA::initCPU(tc, tc->readCpuId()); } #endif } bool AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt) { panic("AtomicSimpleCPU doesn't expect recvTiming callback!"); return true; } Tick AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) { //Snooping a coherence request, just return return curTick; } void AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) { //No internal storage to update, just return return; } void AtomicSimpleCPU::CpuPort::recvStatusChange(Status status) { if (status == RangeChange) return; panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!"); } void AtomicSimpleCPU::CpuPort::recvRetry() { panic("AtomicSimpleCPU doesn't expect recvRetry callback!"); } AtomicSimpleCPU::AtomicSimpleCPU(Params *p) : BaseSimpleCPU(p), tickEvent(this), width(p->width), simulate_stalls(p->simulate_stalls), icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this) { _status = Idle; ifetch_req = new Request(); ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast); ifetch_pkt->dataStatic(&inst); data_read_req = new Request(); data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too data_read_pkt = new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast); data_read_pkt->dataStatic(&dataReg); data_write_req = new Request(); data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too data_write_pkt = new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast); } AtomicSimpleCPU::~AtomicSimpleCPU() { } void AtomicSimpleCPU::serialize(ostream &os) { SimObject::State so_state = SimObject::getState(); SERIALIZE_ENUM(so_state); Status _status = status(); SERIALIZE_ENUM(_status); BaseSimpleCPU::serialize(os); nameOut(os, csprintf("%s.tickEvent", name())); tickEvent.serialize(os); } void AtomicSimpleCPU::unserialize(Checkpoint *cp, const string §ion) { SimObject::State so_state; UNSERIALIZE_ENUM(so_state); UNSERIALIZE_ENUM(_status); BaseSimpleCPU::unserialize(cp, section); tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); } void AtomicSimpleCPU::resume() { changeState(SimObject::Running); if (thread->status() == ThreadContext::Active) { assert(system->getMemoryMode() == System::Atomic); if (!tickEvent.scheduled()) tickEvent.schedule(curTick); } } void AtomicSimpleCPU::switchOut() { assert(status() == Running || status() == Idle); _status = SwitchedOut; tickEvent.squash(); } void AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU); assert(!tickEvent.scheduled()); // if any of this CPU's ThreadContexts are active, mark the CPU as // running and schedule its tick event. for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; if (tc->status() == ThreadContext::Active && _status != Running) { _status = Running; tickEvent.schedule(curTick); break; } } } void AtomicSimpleCPU::activateContext(int thread_num, int delay) { assert(thread_num == 0); assert(thread); assert(_status == Idle); assert(!tickEvent.scheduled()); notIdleFraction++; tickEvent.schedule(curTick + cycles(delay)); _status = Running; } void AtomicSimpleCPU::suspendContext(int thread_num) { assert(thread_num == 0); assert(thread); assert(_status == Running); // tick event may not be scheduled if this gets called from inside // an instruction's execution, e.g. "quiesce" if (tickEvent.scheduled()) tickEvent.deschedule(); notIdleFraction--; _status = Idle; } template Fault AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags) { // use the CPU's statically allocated read request and packet objects Request *req = data_read_req; PacketPtr pkt = data_read_pkt; req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); if (traceData) { traceData->setAddr(addr); } // translate to physical address Fault fault = thread->translateDataReadReq(req); // Now do the access. if (fault == NoFault) { pkt->reinitFromRequest(); dcache_latency = dcachePort.sendAtomic(pkt); dcache_access = true; assert(pkt->result == Packet::Success); data = pkt->get(); if (req->isLocked()) { TheISA::handleLockedRead(thread, req); } } // This will need a new way to tell if it has a dcache attached. if (req->isUncacheable()) recordEvent("Uncached Read"); return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); template Fault AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); template Fault AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); template Fault AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags) { return read(addr, *(uint64_t*)&data, flags); } template<> Fault AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags) { return read(addr, *(uint32_t*)&data, flags); } template<> Fault AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) { return read(addr, (uint32_t&)data, flags); } template Fault AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { // use the CPU's statically allocated write request and packet objects Request *req = data_write_req; PacketPtr pkt = data_write_pkt; req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); if (traceData) { traceData->setAddr(addr); } // translate to physical address Fault fault = thread->translateDataWriteReq(req); // Now do the access. if (fault == NoFault) { bool do_access = true; // flag to suppress cache access if (req->isLocked()) { do_access = TheISA::handleLockedWrite(thread, req); } if (do_access) { data = htog(data); pkt->reinitFromRequest(); pkt->dataStatic(&data); dcache_latency = dcachePort.sendAtomic(pkt); dcache_access = true; assert(pkt->result == Packet::Success); } if (req->isLocked()) { uint64_t scResult = req->getScResult(); if (scResult != 0) { // clear failure counter thread->setStCondFailures(0); } if (res) { *res = req->getScResult(); } } } // This will need a new way to tell if it's hooked up to a cache or not. if (req->isUncacheable()) recordEvent("Uncached Write"); // If the write needs to have a fault on the access, consider calling // changeStatus() and changing it to "bad addr write" or something. return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault AtomicSimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault AtomicSimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault AtomicSimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault AtomicSimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint64_t*)&data, addr, flags, res); } template<> Fault AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint32_t*)&data, addr, flags, res); } template<> Fault AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write((uint32_t)data, addr, flags, res); } void AtomicSimpleCPU::tick() { Tick latency = cycles(1); // instruction takes one cycle by default for (int i = 0; i < width; ++i) { numCycles++; checkForInterrupts(); Fault fault = setupFetchRequest(ifetch_req); if (fault == NoFault) { ifetch_pkt->reinitFromRequest(); Tick icache_latency = icachePort.sendAtomic(ifetch_pkt); // ifetch_req is initialized to read the instruction directly // into the CPU object's inst field. dcache_access = false; // assume no dcache access preExecute(); fault = curStaticInst->execute(this, traceData); postExecute(); if (simulate_stalls) { Tick icache_stall = icache_latency - cycles(1); Tick dcache_stall = dcache_access ? dcache_latency - cycles(1) : 0; Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1); if (cycles(stall_cycles) < (icache_stall + dcache_stall)) latency += cycles(stall_cycles+1); else latency += cycles(stall_cycles); } } advancePC(fault); } if (_status != Idle) tickEvent.schedule(curTick + latency); } //////////////////////////////////////////////////////////////////////// // // AtomicSimpleCPU Simulation Object // BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) Param max_insts_any_thread; Param max_insts_all_threads; Param max_loads_any_thread; Param max_loads_all_threads; Param progress_interval; SimObjectParam mem; SimObjectParam system; Param cpu_id; #if FULL_SYSTEM SimObjectParam itb; SimObjectParam dtb; Param profile; #else SimObjectParam workload; #endif // FULL_SYSTEM Param clock; Param defer_registration; Param width; Param function_trace; Param function_trace_start; Param simulate_stalls; END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) INIT_PARAM(max_insts_any_thread, "terminate when any thread reaches this inst count"), INIT_PARAM(max_insts_all_threads, "terminate when all threads have reached this inst count"), INIT_PARAM(max_loads_any_thread, "terminate when any thread reaches this load count"), INIT_PARAM(max_loads_all_threads, "terminate when all threads have reached this load count"), INIT_PARAM(progress_interval, "Progress interval"), INIT_PARAM(mem, "memory"), INIT_PARAM(system, "system object"), INIT_PARAM(cpu_id, "processor ID"), #if FULL_SYSTEM INIT_PARAM(itb, "Instruction TLB"), INIT_PARAM(dtb, "Data TLB"), INIT_PARAM(profile, ""), #else INIT_PARAM(workload, "processes to run"), #endif // FULL_SYSTEM INIT_PARAM(clock, "clock speed"), INIT_PARAM(defer_registration, "defer system registration (for sampling)"), INIT_PARAM(width, "cpu width"), INIT_PARAM(function_trace, "Enable function trace"), INIT_PARAM(function_trace_start, "Cycle to start function trace"), INIT_PARAM(simulate_stalls, "Simulate cache stall cycles") END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) CREATE_SIM_OBJECT(AtomicSimpleCPU) { AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params(); params->name = getInstanceName(); params->numberOfThreads = 1; params->max_insts_any_thread = max_insts_any_thread; params->max_insts_all_threads = max_insts_all_threads; params->max_loads_any_thread = max_loads_any_thread; params->max_loads_all_threads = max_loads_all_threads; params->progress_interval = progress_interval; params->deferRegistration = defer_registration; params->clock = clock; params->functionTrace = function_trace; params->functionTraceStart = function_trace_start; params->width = width; params->simulate_stalls = simulate_stalls; params->mem = mem; params->system = system; params->cpu_id = cpu_id; #if FULL_SYSTEM params->itb = itb; params->dtb = dtb; params->profile = profile; #else params->process = workload; #endif AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params); return cpu; } REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)