/* * Copyright (c) 2016-2019 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved *. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathanael Premillieu * Rekai Gonzalez */ #ifndef __CPU__REG_CLASS_HH__ #define __CPU__REG_CLASS_HH__ #include #include #include "arch/generic/types.hh" #include "arch/registers.hh" #include "config/the_isa.hh" /** Enumerate the classes of registers. */ enum RegClass { IntRegClass, ///< Integer register FloatRegClass, ///< Floating-point register /** Vector Register. */ VecRegClass, /** Vector Register Native Elem lane. */ VecElemClass, VecPredRegClass, CCRegClass, ///< Condition-code register MiscRegClass ///< Control (misc) register }; /** Number of register classes. * This value is not part of the enum, because putting it there makes the * compiler complain about unhandled cases in some switch statements. */ const int NumRegClasses = MiscRegClass + 1; /** Register ID: describe an architectural register with its class and index. * This structure is used instead of just the register index to disambiguate * between different classes of registers. For example, a integer register with * index 3 is represented by Regid(IntRegClass, 3). */ class RegId { protected: static const char* regClassStrings[]; RegClass regClass; RegIndex regIdx; ElemIndex elemIdx; static constexpr size_t Scale = TheISA::NumVecElemPerVecReg; int numPinnedWrites; friend struct std::hash; public: RegId() : RegId(IntRegClass, 0) {} RegId(RegClass reg_class, RegIndex reg_idx) : RegId(reg_class, reg_idx, ILLEGAL_ELEM_INDEX) {} explicit RegId(RegClass reg_class, RegIndex reg_idx, ElemIndex elem_idx) : regClass(reg_class), regIdx(reg_idx), elemIdx(elem_idx), numPinnedWrites(0) { if (elemIdx == ILLEGAL_ELEM_INDEX) { panic_if(regClass == VecElemClass, "Creating vector physical index w/o element index"); } else { panic_if(regClass != VecElemClass, "Creating non-vector physical index w/ element index"); } } bool operator==(const RegId& that) const { return regClass == that.classValue() && regIdx == that.index() && elemIdx == that.elemIndex(); } bool operator!=(const RegId& that) const { return !(*this==that); } /** Order operator. * The order is required to implement maps with key type RegId */ bool operator<(const RegId& that) const { return regClass < that.classValue() || (regClass == that.classValue() && ( regIdx < that.index() || (regIdx == that.index() && elemIdx < that.elemIndex()))); } /** * Return true if this register can be renamed */ bool isRenameable() const { return regClass != MiscRegClass; } /** * Check if this is the zero register. * Returns true if this register is a zero register (needs to have a * constant zero value throughout the execution). */ inline bool isZeroReg() const { return ((regClass == IntRegClass && regIdx == TheISA::ZeroReg) || (THE_ISA == ALPHA_ISA && regClass == FloatRegClass && regIdx == TheISA::ZeroReg)); } /** @return true if it is an integer physical register. */ bool isIntReg() const { return regClass == IntRegClass; } /** @return true if it is a floating-point physical register. */ bool isFloatReg() const { return regClass == FloatRegClass; } /** @Return true if it is a condition-code physical register. */ bool isVecReg() const { return regClass == VecRegClass; } /** @Return true if it is a condition-code physical register. */ bool isVecElem() const { return regClass == VecElemClass; } /** @Return true if it is a predicate physical register. */ bool isVecPredReg() const { return regClass == VecPredRegClass; } /** @Return true if it is a condition-code physical register. */ bool isCCReg() const { return regClass == CCRegClass; } /** @Return true if it is a condition-code physical register. */ bool isMiscReg() const { return regClass == MiscRegClass; } /** * Return true if this register can be renamed */ bool isRenameable() { return regClass != MiscRegClass; } /** Index accessors */ /** @{ */ const RegIndex& index() const { return regIdx; } RegIndex& index() { return regIdx; } /** Index flattening. * Required to be able to use a vector for the register mapping. */ inline RegIndex flatIndex() const { switch (regClass) { case IntRegClass: case FloatRegClass: case VecRegClass: case VecPredRegClass: case CCRegClass: case MiscRegClass: return regIdx; case VecElemClass: return Scale*regIdx + elemIdx; } panic("Trying to flatten a register without class!"); return -1; } /** @} */ /** Elem accessor */ const RegIndex& elemIndex() const { return elemIdx; } /** Class accessor */ const RegClass& classValue() const { return regClass; } /** Return a const char* with the register class name. */ const char* className() const { return regClassStrings[regClass]; } int getNumPinnedWrites() const { return numPinnedWrites; } void setNumPinnedWrites(int num_writes) { numPinnedWrites = num_writes; } friend std::ostream& operator<<(std::ostream& os, const RegId& rid) { return os << rid.className() << "{" << rid.index() << "}"; } }; /** Physical register index type. * Although the Impl might be a better for this, but there are a few classes * that need this typedef yet are not templated on the Impl. */ using PhysRegIndex = short int; /** Physical register ID. * Like a register ID but physical. The inheritance is private because the * only relationship between this types is functional, and it is done to * prevent code replication. */ class PhysRegId : private RegId { private: PhysRegIndex flatIdx; int numPinnedWritesToComplete; bool pinned; public: explicit PhysRegId() : RegId(IntRegClass, -1), flatIdx(-1), numPinnedWritesToComplete(0) {} /** Scalar PhysRegId constructor. */ explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, PhysRegIndex _flatIdx) : RegId(_regClass, _regIdx), flatIdx(_flatIdx), numPinnedWritesToComplete(0), pinned(false) {} /** Vector PhysRegId constructor (w/ elemIndex). */ explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, ElemIndex elem_idx, PhysRegIndex flat_idx) : RegId(_regClass, _regIdx, elem_idx), flatIdx(flat_idx), numPinnedWritesToComplete(0), pinned(false) {} /** Visible RegId methods */ /** @{ */ using RegId::index; using RegId::classValue; using RegId::isZeroReg; using RegId::className; using RegId::elemIndex; /** @} */ /** * Explicit forward methods, to prevent comparisons of PhysRegId with * RegIds. */ /** @{ */ bool operator<(const PhysRegId& that) const { return RegId::operator<(that); } bool operator==(const PhysRegId& that) const { return RegId::operator==(that); } bool operator!=(const PhysRegId& that) const { return RegId::operator!=(that); } /** @} */ /** @return true if it is an integer physical register. */ bool isIntPhysReg() const { return isIntReg(); } /** @return true if it is a floating-point physical register. */ bool isFloatPhysReg() const { return isFloatReg(); } /** @Return true if it is a condition-code physical register. */ bool isCCPhysReg() const { return isCCReg(); } /** @Return true if it is a vector physical register. */ bool isVectorPhysReg() const { return isVecReg(); } /** @Return true if it is a vector element physical register. */ bool isVectorPhysElem() const { return isVecElem(); } /** @return true if it is a vector predicate physical register. */ bool isVecPredPhysReg() const { return isVecPredReg(); } /** @Return true if it is a condition-code physical register. */ bool isMiscPhysReg() const { return isMiscReg(); } /** * Returns true if this register is always associated to the same * architectural register. */ bool isFixedMapping() const { return !isRenameable(); } /** Flat index accessor */ const PhysRegIndex& flatIndex() const { return flatIdx; } static PhysRegId elemId(PhysRegId* vid, ElemIndex elem) { assert(vid->isVectorPhysReg()); return PhysRegId(VecElemClass, vid->index(), elem); } int getNumPinnedWrites() const { return numPinnedWrites; } void setNumPinnedWrites(int numWrites) { // An instruction with a pinned destination reg can get // squashed. The numPinnedWrites counter may be zero when // the squash happens but we need to know if the dest reg // was pinned originally in order to reset counters properly // for a possible re-rename using the same physical reg (which // may be required in case of a mem access order violation). pinned = (numWrites != 0); numPinnedWrites = numWrites; } void decrNumPinnedWrites() { --numPinnedWrites; } void incrNumPinnedWrites() { ++numPinnedWrites; } bool isPinned() const { return pinned; } int getNumPinnedWritesToComplete() const { return numPinnedWritesToComplete; } void setNumPinnedWritesToComplete(int numWrites) { numPinnedWritesToComplete = numWrites; } void decrNumPinnedWritesToComplete() { --numPinnedWritesToComplete; } void incrNumPinnedWritesToComplete() { ++numPinnedWritesToComplete; } }; using PhysRegIdPtr = PhysRegId*; namespace std { template<> struct hash { size_t operator()(const RegId& reg_id) const { // Extract unique integral values for the effective fields of a RegId. const size_t flat_index = static_cast(reg_id.flatIndex()); const size_t class_num = static_cast(reg_id.regClass); const size_t shifted_class_num = class_num << (sizeof(RegIndex) << 3); // Concatenate the class_num to the end of the flat_index, in order to // maximize information retained. const size_t concatenated_hash = flat_index | shifted_class_num; // If RegIndex is larger than size_t, then class_num will not be // considered by this hash function, so we may wish to perform a // different operation to include that information in the hash. static_assert(sizeof(RegIndex) < sizeof(size_t), "sizeof(RegIndex) should be less than sizeof(size_t)"); return concatenated_hash; } }; } #endif // __CPU__REG_CLASS_HH__