/* * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Korey Sewell */ #include #include "config/full_system.hh" #include "cpu/o3/rename.hh" using namespace std; template DefaultRename::DefaultRename(Params *params) : iewToRenameDelay(params->iewToRenameDelay), decodeToRenameDelay(params->decodeToRenameDelay), commitToRenameDelay(params->commitToRenameDelay), renameWidth(params->renameWidth), commitWidth(params->commitWidth), numThreads(params->numberOfThreads) { _status = Inactive; for (int i=0; i< numThreads; i++) { renameStatus[i] = Idle; freeEntries[i].iqEntries = 0; freeEntries[i].lsqEntries = 0; freeEntries[i].robEntries = 0; stalls[i].iew = false; stalls[i].commit = false; serializeInst[i] = NULL; instsInProgress[i] = 0; emptyROB[i] = true; serializeOnNextInst[i] = false; } // @todo: Make into a parameter. skidBufferMax = (2 * (iewToRenameDelay * params->decodeWidth)) + renameWidth; } template std::string DefaultRename::name() const { return cpu->name() + ".rename"; } template void DefaultRename::regStats() { renameSquashCycles .name(name() + ".RENAME:SquashCycles") .desc("Number of cycles rename is squashing") .prereq(renameSquashCycles); renameIdleCycles .name(name() + ".RENAME:IdleCycles") .desc("Number of cycles rename is idle") .prereq(renameIdleCycles); renameBlockCycles .name(name() + ".RENAME:BlockCycles") .desc("Number of cycles rename is blocking") .prereq(renameBlockCycles); renameSerializeStallCycles .name(name() + ".RENAME:serializeStallCycles") .desc("count of cycles rename stalled for serializing inst") .flags(Stats::total); renameRunCycles .name(name() + ".RENAME:RunCycles") .desc("Number of cycles rename is running") .prereq(renameIdleCycles); renameUnblockCycles .name(name() + ".RENAME:UnblockCycles") .desc("Number of cycles rename is unblocking") .prereq(renameUnblockCycles); renameRenamedInsts .name(name() + ".RENAME:RenamedInsts") .desc("Number of instructions processed by rename") .prereq(renameRenamedInsts); renameSquashedInsts .name(name() + ".RENAME:SquashedInsts") .desc("Number of squashed instructions processed by rename") .prereq(renameSquashedInsts); renameROBFullEvents .name(name() + ".RENAME:ROBFullEvents") .desc("Number of times rename has blocked due to ROB full") .prereq(renameROBFullEvents); renameIQFullEvents .name(name() + ".RENAME:IQFullEvents") .desc("Number of times rename has blocked due to IQ full") .prereq(renameIQFullEvents); renameLSQFullEvents .name(name() + ".RENAME:LSQFullEvents") .desc("Number of times rename has blocked due to LSQ full") .prereq(renameLSQFullEvents); renameFullRegistersEvents .name(name() + ".RENAME:FullRegisterEvents") .desc("Number of times there has been no free registers") .prereq(renameFullRegistersEvents); renameRenamedOperands .name(name() + ".RENAME:RenamedOperands") .desc("Number of destination operands rename has renamed") .prereq(renameRenamedOperands); renameRenameLookups .name(name() + ".RENAME:RenameLookups") .desc("Number of register rename lookups that rename has made") .prereq(renameRenameLookups); renameCommittedMaps .name(name() + ".RENAME:CommittedMaps") .desc("Number of HB maps that are committed") .prereq(renameCommittedMaps); renameUndoneMaps .name(name() + ".RENAME:UndoneMaps") .desc("Number of HB maps that are undone due to squashing") .prereq(renameUndoneMaps); renamedSerializing .name(name() + ".RENAME:serializingInsts") .desc("count of serializing insts renamed") .flags(Stats::total) ; renamedTempSerializing .name(name() + ".RENAME:tempSerializingInsts") .desc("count of temporary serializing insts renamed") .flags(Stats::total) ; renameSkidInsts .name(name() + ".RENAME:skidInsts") .desc("count of insts added to the skid buffer") .flags(Stats::total) ; } template void DefaultRename::setCPU(O3CPU *cpu_ptr) { DPRINTF(Rename, "Setting CPU pointer.\n"); cpu = cpu_ptr; } template void DefaultRename::setTimeBuffer(TimeBuffer *tb_ptr) { DPRINTF(Rename, "Setting time buffer pointer.\n"); timeBuffer = tb_ptr; // Setup wire to read information from time buffer, from IEW stage. fromIEW = timeBuffer->getWire(-iewToRenameDelay); // Setup wire to read infromation from time buffer, from commit stage. fromCommit = timeBuffer->getWire(-commitToRenameDelay); // Setup wire to write information to previous stages. toDecode = timeBuffer->getWire(0); } template void DefaultRename::setRenameQueue(TimeBuffer *rq_ptr) { DPRINTF(Rename, "Setting rename queue pointer.\n"); renameQueue = rq_ptr; // Setup wire to write information to future stages. toIEW = renameQueue->getWire(0); } template void DefaultRename::setDecodeQueue(TimeBuffer *dq_ptr) { DPRINTF(Rename, "Setting decode queue pointer.\n"); decodeQueue = dq_ptr; // Setup wire to get information from decode. fromDecode = decodeQueue->getWire(-decodeToRenameDelay); } template void DefaultRename::initStage() { // Grab the number of free entries directly from the stages. for (int tid=0; tid < numThreads; tid++) { freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid); freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid); freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid); emptyROB[tid] = true; } } template void DefaultRename::setActiveThreads(list *at_ptr) { DPRINTF(Rename, "Setting active threads list pointer.\n"); activeThreads = at_ptr; } template void DefaultRename::setRenameMap(RenameMap rm_ptr[]) { DPRINTF(Rename, "Setting rename map pointers.\n"); for (int i=0; i void DefaultRename::setFreeList(FreeList *fl_ptr) { DPRINTF(Rename, "Setting free list pointer.\n"); freeList = fl_ptr; } template void DefaultRename::setScoreboard(Scoreboard *_scoreboard) { DPRINTF(Rename, "Setting scoreboard pointer.\n"); scoreboard = _scoreboard; } template bool DefaultRename::drain() { // Rename is ready to switch out at any time. cpu->signalDrained(); return true; } template void DefaultRename::switchOut() { // Clear any state, fix up the rename map. for (int i = 0; i < numThreads; i++) { typename list::iterator hb_it = historyBuffer[i].begin(); while (!historyBuffer[i].empty()) { assert(hb_it != historyBuffer[i].end()); DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence " "number %i.\n", i, (*hb_it).instSeqNum); // Tell the rename map to set the architected register to the // previous physical register that it was renamed to. renameMap[i]->setEntry(hb_it->archReg, hb_it->prevPhysReg); // Put the renamed physical register back on the free list. freeList->addReg(hb_it->newPhysReg); historyBuffer[i].erase(hb_it++); } insts[i].clear(); skidBuffer[i].clear(); } } template void DefaultRename::takeOverFrom() { _status = Inactive; initStage(); // Reset all state prior to taking over from the other CPU. for (int i=0; i< numThreads; i++) { renameStatus[i] = Idle; stalls[i].iew = false; stalls[i].commit = false; serializeInst[i] = NULL; instsInProgress[i] = 0; emptyROB[i] = true; serializeOnNextInst[i] = false; } } template void DefaultRename::squash(const InstSeqNum &squash_seq_num, unsigned tid) { DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid); // Clear the stall signal if rename was blocked or unblocking before. // If it still needs to block, the blocking should happen the next // cycle and there should be space to hold everything due to the squash. if (renameStatus[tid] == Blocked || renameStatus[tid] == Unblocking || renameStatus[tid] == SerializeStall) { toDecode->renameUnblock[tid] = 1; serializeInst[tid] = NULL; } // Set the status to Squashing. renameStatus[tid] = Squashing; // Squash any instructions from decode. unsigned squashCount = 0; for (int i=0; isize; i++) { if (fromDecode->insts[i]->threadNumber == tid && fromDecode->insts[i]->seqNum > squash_seq_num) { fromDecode->insts[i]->setSquashed(); wroteToTimeBuffer = true; squashCount++; } } // Clear the instruction list and skid buffer in case they have any // insts in them. Since we support multiple ISAs, we cant just: // "insts[tid].clear();" or "skidBuffer[tid].clear()" since there is // a possible delay slot inst for different architectures // insts[tid].clear(); #if THE_ISA == ALPHA_ISA insts[tid].clear(); #else DPRINTF(Rename, "[tid:%i] Squashing incoming decode instructions until " "[sn:%i].\n",tid, squash_seq_num); ListIt ilist_it = insts[tid].begin(); while (ilist_it != insts[tid].end()) { if ((*ilist_it)->seqNum > squash_seq_num) { (*ilist_it)->setSquashed(); DPRINTF(Rename, "Squashing incoming decode instruction, " "[tid:%i] [sn:%i] PC %08p.\n", tid, (*ilist_it)->seqNum, (*ilist_it)->PC); } ilist_it++; } #endif // Clear the skid buffer in case it has any data in it. // See comments above. // skidBuffer[tid].clear(); #if THE_ISA == ALPHA_ISA skidBuffer[tid].clear(); #else DPRINTF(Rename, "[tid:%i] Squashing incoming skidbuffer instructions " "until [sn:%i].\n", tid, squash_seq_num); ListIt slist_it = skidBuffer[tid].begin(); while (slist_it != skidBuffer[tid].end()) { if ((*slist_it)->seqNum > squash_seq_num) { (*slist_it)->setSquashed(); DPRINTF(Rename, "Squashing skidbuffer instruction, [tid:%i] [sn:%i]" "PC %08p.\n", tid, (*slist_it)->seqNum, (*slist_it)->PC); } slist_it++; } #endif doSquash(squash_seq_num, tid); } template void DefaultRename::tick() { wroteToTimeBuffer = false; blockThisCycle = false; bool status_change = false; toIEWIndex = 0; sortInsts(); list::iterator threads = (*activeThreads).begin(); // Check stall and squash signals. while (threads != (*activeThreads).end()) { unsigned tid = *threads++; DPRINTF(Rename, "Processing [tid:%i]\n", tid); status_change = checkSignalsAndUpdate(tid) || status_change; rename(status_change, tid); } if (status_change) { updateStatus(); } if (wroteToTimeBuffer) { DPRINTF(Activity, "Activity this cycle.\n"); cpu->activityThisCycle(); } threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { unsigned tid = *threads++; // If we committed this cycle then doneSeqNum will be > 0 if (fromCommit->commitInfo[tid].doneSeqNum != 0 && !fromCommit->commitInfo[tid].squash && renameStatus[tid] != Squashing) { removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum, tid); } } // @todo: make into updateProgress function for (int tid=0; tid < numThreads; tid++) { instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched; assert(instsInProgress[tid] >=0); } } template void DefaultRename::rename(bool &status_change, unsigned tid) { // If status is Running or idle, // call renameInsts() // If status is Unblocking, // buffer any instructions coming from decode // continue trying to empty skid buffer // check if stall conditions have passed if (renameStatus[tid] == Blocked) { ++renameBlockCycles; } else if (renameStatus[tid] == Squashing) { ++renameSquashCycles; } else if (renameStatus[tid] == SerializeStall) { ++renameSerializeStallCycles; } if (renameStatus[tid] == Running || renameStatus[tid] == Idle) { DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run " "stage.\n", tid); renameInsts(tid); } else if (renameStatus[tid] == Unblocking) { renameInsts(tid); if (validInsts()) { // Add the current inputs to the skid buffer so they can be // reprocessed when this stage unblocks. skidInsert(tid); } // If we switched over to blocking, then there's a potential for // an overall status change. status_change = unblock(tid) || status_change || blockThisCycle; } } template void DefaultRename::renameInsts(unsigned tid) { // Instructions can be either in the skid buffer or the queue of // instructions coming from decode, depending on the status. int insts_available = renameStatus[tid] == Unblocking ? skidBuffer[tid].size() : insts[tid].size(); // Check the decode queue to see if instructions are available. // If there are no available instructions to rename, then do nothing. if (insts_available == 0) { DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n", tid); // Should I change status to idle? ++renameIdleCycles; return; } else if (renameStatus[tid] == Unblocking) { ++renameUnblockCycles; } else if (renameStatus[tid] == Running) { ++renameRunCycles; } DynInstPtr inst; // Will have to do a different calculation for the number of free // entries. int free_rob_entries = calcFreeROBEntries(tid); int free_iq_entries = calcFreeIQEntries(tid); int free_lsq_entries = calcFreeLSQEntries(tid); int min_free_entries = free_rob_entries; FullSource source = ROB; if (free_iq_entries < min_free_entries) { min_free_entries = free_iq_entries; source = IQ; } if (free_lsq_entries < min_free_entries) { min_free_entries = free_lsq_entries; source = LSQ; } // Check if there's any space left. if (min_free_entries <= 0) { DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ " "entries.\n" "ROB has %i free entries.\n" "IQ has %i free entries.\n" "LSQ has %i free entries.\n", tid, free_rob_entries, free_iq_entries, free_lsq_entries); blockThisCycle = true; block(tid); incrFullStat(source); return; } else if (min_free_entries < insts_available) { DPRINTF(Rename, "[tid:%u]: Will have to block this cycle." "%i insts available, but only %i insts can be " "renamed due to ROB/IQ/LSQ limits.\n", tid, insts_available, min_free_entries); insts_available = min_free_entries; blockThisCycle = true; incrFullStat(source); } InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ? skidBuffer[tid] : insts[tid]; DPRINTF(Rename, "[tid:%u]: %i available instructions to " "send iew.\n", tid, insts_available); DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts " "dispatched to IQ last cycle.\n", tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched); // Handle serializing the next instruction if necessary. if (serializeOnNextInst[tid]) { if (emptyROB[tid] && instsInProgress[tid] == 0) { // ROB already empty; no need to serialize. serializeOnNextInst[tid] = false; } else if (!insts_to_rename.empty()) { insts_to_rename.front()->setSerializeBefore(); } } int renamed_insts = 0; while (insts_available > 0 && toIEWIndex < renameWidth) { DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid); assert(!insts_to_rename.empty()); inst = insts_to_rename.front(); insts_to_rename.pop_front(); if (renameStatus[tid] == Unblocking) { DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%#x from rename " "skidBuffer\n", tid, inst->seqNum, inst->readPC()); } if (inst->isSquashed()) { DPRINTF(Rename, "[tid:%u]: instruction %i with PC %#x is " "squashed, skipping.\n", tid, inst->seqNum, inst->readPC()); ++renameSquashedInsts; // Decrement how many instructions are available. --insts_available; continue; } DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with " "PC %#x.\n", tid, inst->seqNum, inst->readPC()); // Handle serializeAfter/serializeBefore instructions. // serializeAfter marks the next instruction as serializeBefore. // serializeBefore makes the instruction wait in rename until the ROB // is empty. // In this model, IPR accesses are serialize before // instructions, and store conditionals are serialize after // instructions. This is mainly due to lack of support for // out-of-order operations of either of those classes of // instructions. if ((inst->isIprAccess() || inst->isSerializeBefore()) && !inst->isSerializeHandled()) { DPRINTF(Rename, "Serialize before instruction encountered.\n"); if (!inst->isTempSerializeBefore()) { renamedSerializing++; inst->setSerializeHandled(); } else { renamedTempSerializing++; } // Change status over to SerializeStall so that other stages know // what this is blocked on. renameStatus[tid] = SerializeStall; serializeInst[tid] = inst; blockThisCycle = true; break; } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) && !inst->isSerializeHandled()) { DPRINTF(Rename, "Serialize after instruction encountered.\n"); renamedSerializing++; inst->setSerializeHandled(); serializeAfter(insts_to_rename, tid); } // Check here to make sure there are enough destination registers // to rename to. Otherwise block. if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) { DPRINTF(Rename, "Blocking due to lack of free " "physical registers to rename to.\n"); blockThisCycle = true; ++renameFullRegistersEvents; break; } renameSrcRegs(inst, inst->threadNumber); renameDestRegs(inst, inst->threadNumber); ++renamed_insts; // Put instruction in rename queue. toIEW->insts[toIEWIndex] = inst; ++(toIEW->size); // Increment which instruction we're on. ++toIEWIndex; // Decrement how many instructions are available. --insts_available; } instsInProgress[tid] += renamed_insts; renameRenamedInsts += renamed_insts; // If we wrote to the time buffer, record this. if (toIEWIndex) { wroteToTimeBuffer = true; } // Check if there's any instructions left that haven't yet been renamed. // If so then block. if (insts_available) { blockThisCycle = true; } if (blockThisCycle) { block(tid); toDecode->renameUnblock[tid] = false; } } template void DefaultRename::skidInsert(unsigned tid) { DynInstPtr inst = NULL; while (!insts[tid].empty()) { inst = insts[tid].front(); insts[tid].pop_front(); assert(tid == inst->threadNumber); DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC:%#x into Rename " "skidBuffer\n", tid, inst->seqNum, inst->readPC()); ++renameSkidInsts; skidBuffer[tid].push_back(inst); } if (skidBuffer[tid].size() > skidBufferMax) panic("Skidbuffer Exceeded Max Size"); } template void DefaultRename::sortInsts() { int insts_from_decode = fromDecode->size; #ifdef DEBUG #if THE_ISA == ALPHA_ISA for (int i=0; i < numThreads; i++) assert(insts[i].empty()); #endif #endif for (int i = 0; i < insts_from_decode; ++i) { DynInstPtr inst = fromDecode->insts[i]; insts[inst->threadNumber].push_back(inst); } } template bool DefaultRename::skidsEmpty() { list::iterator threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { if (!skidBuffer[*threads++].empty()) return false; } return true; } template void DefaultRename::updateStatus() { bool any_unblocking = false; list::iterator threads = (*activeThreads).begin(); threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { unsigned tid = *threads++; if (renameStatus[tid] == Unblocking) { any_unblocking = true; break; } } // Rename will have activity if it's unblocking. if (any_unblocking) { if (_status == Inactive) { _status = Active; DPRINTF(Activity, "Activating stage.\n"); cpu->activateStage(O3CPU::RenameIdx); } } else { // If it's not unblocking, then rename will not have any internal // activity. Switch it to inactive. if (_status == Active) { _status = Inactive; DPRINTF(Activity, "Deactivating stage.\n"); cpu->deactivateStage(O3CPU::RenameIdx); } } } template bool DefaultRename::block(unsigned tid) { DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid); // Add the current inputs onto the skid buffer, so they can be // reprocessed when this stage unblocks. skidInsert(tid); // Only signal backwards to block if the previous stages do not think // rename is already blocked. if (renameStatus[tid] != Blocked) { if (renameStatus[tid] != Unblocking) { toDecode->renameBlock[tid] = true; toDecode->renameUnblock[tid] = false; wroteToTimeBuffer = true; } // Rename can not go from SerializeStall to Blocked, otherwise // it would not know to complete the serialize stall. if (renameStatus[tid] != SerializeStall) { // Set status to Blocked. renameStatus[tid] = Blocked; return true; } } return false; } template bool DefaultRename::unblock(unsigned tid) { DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid); // Rename is done unblocking if the skid buffer is empty. if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) { DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid); toDecode->renameUnblock[tid] = true; wroteToTimeBuffer = true; renameStatus[tid] = Running; return true; } return false; } template void DefaultRename::doSquash(const InstSeqNum &squashed_seq_num, unsigned tid) { typename list::iterator hb_it = historyBuffer[tid].begin(); // After a syscall squashes everything, the history buffer may be empty // but the ROB may still be squashing instructions. if (historyBuffer[tid].empty()) { return; } // Go through the most recent instructions, undoing the mappings // they did and freeing up the registers. while (!historyBuffer[tid].empty() && (*hb_it).instSeqNum > squashed_seq_num) { assert(hb_it != historyBuffer[tid].end()); DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence " "number %i.\n", tid, (*hb_it).instSeqNum); // Tell the rename map to set the architected register to the // previous physical register that it was renamed to. renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg); // Put the renamed physical register back on the free list. freeList->addReg(hb_it->newPhysReg); historyBuffer[tid].erase(hb_it++); ++renameUndoneMaps; } } template void DefaultRename::removeFromHistory(InstSeqNum inst_seq_num, unsigned tid) { DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the " "history buffer %u (size=%i), until [sn:%lli].\n", tid, tid, historyBuffer[tid].size(), inst_seq_num); typename list::iterator hb_it = historyBuffer[tid].end(); --hb_it; if (historyBuffer[tid].empty()) { DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid); return; } else if (hb_it->instSeqNum > inst_seq_num) { DPRINTF(Rename, "[tid:%u]: Old sequence number encountered. Ensure " "that a syscall happened recently.\n", tid); return; } // Commit all the renames up until (and including) the committed sequence // number. Some or even all of the committed instructions may not have // rename histories if they did not have destination registers that were // renamed. while (!historyBuffer[tid].empty() && hb_it != historyBuffer[tid].end() && (*hb_it).instSeqNum <= inst_seq_num) { DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, " "[sn:%lli].\n", tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum); freeList->addReg((*hb_it).prevPhysReg); ++renameCommittedMaps; historyBuffer[tid].erase(hb_it--); } } template inline void DefaultRename::renameSrcRegs(DynInstPtr &inst,unsigned tid) { assert(renameMap[tid] != 0); unsigned num_src_regs = inst->numSrcRegs(); // Get the architectual register numbers from the source and // destination operands, and redirect them to the right register. // Will need to mark dependencies though. for (int src_idx = 0; src_idx < num_src_regs; src_idx++) { RegIndex src_reg = inst->srcRegIdx(src_idx); // Look up the source registers to get the phys. register they've // been renamed to, and set the sources to those registers. PhysRegIndex renamed_reg = renameMap[tid]->lookup(src_reg); DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got " "physical reg %i.\n", tid, (int)src_reg, (int)renamed_reg); inst->renameSrcReg(src_idx, renamed_reg); // See if the register is ready or not. if (scoreboard->getReg(renamed_reg) == true) { DPRINTF(Rename, "[tid:%u]: Register is ready.\n", tid); inst->markSrcRegReady(src_idx); } ++renameRenameLookups; } } template inline void DefaultRename::renameDestRegs(DynInstPtr &inst,unsigned tid) { typename RenameMap::RenameInfo rename_result; unsigned num_dest_regs = inst->numDestRegs(); // Rename the destination registers. for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) { RegIndex dest_reg = inst->destRegIdx(dest_idx); // Get the physical register that the destination will be // renamed to. rename_result = renameMap[tid]->rename(dest_reg); //Mark Scoreboard entry as not ready scoreboard->unsetReg(rename_result.first); DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical " "reg %i.\n", tid, (int)dest_reg, (int)rename_result.first); // Record the rename information so that a history can be kept. RenameHistory hb_entry(inst->seqNum, dest_reg, rename_result.first, rename_result.second); historyBuffer[tid].push_front(hb_entry); DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer " "(size=%i), [sn:%lli].\n",tid, historyBuffer[tid].size(), (*historyBuffer[tid].begin()).instSeqNum); // Tell the instruction to rename the appropriate destination // register (dest_idx) to the new physical register // (rename_result.first), and record the previous physical // register that the same logical register was renamed to // (rename_result.second). inst->renameDestReg(dest_idx, rename_result.first, rename_result.second); ++renameRenamedOperands; } } template inline int DefaultRename::calcFreeROBEntries(unsigned tid) { int num_free = freeEntries[tid].robEntries - (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched); //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free); return num_free; } template inline int DefaultRename::calcFreeIQEntries(unsigned tid) { int num_free = freeEntries[tid].iqEntries - (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched); //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free); return num_free; } template inline int DefaultRename::calcFreeLSQEntries(unsigned tid) { int num_free = freeEntries[tid].lsqEntries - (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ); //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free); return num_free; } template unsigned DefaultRename::validInsts() { unsigned inst_count = 0; for (int i=0; isize; i++) { if (!fromDecode->insts[i]->isSquashed()) inst_count++; } return inst_count; } template void DefaultRename::readStallSignals(unsigned tid) { if (fromIEW->iewBlock[tid]) { stalls[tid].iew = true; } if (fromIEW->iewUnblock[tid]) { assert(stalls[tid].iew); stalls[tid].iew = false; } if (fromCommit->commitBlock[tid]) { stalls[tid].commit = true; } if (fromCommit->commitUnblock[tid]) { assert(stalls[tid].commit); stalls[tid].commit = false; } } template bool DefaultRename::checkStall(unsigned tid) { bool ret_val = false; if (stalls[tid].iew) { DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid); ret_val = true; } else if (stalls[tid].commit) { DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid); ret_val = true; } else if (calcFreeROBEntries(tid) <= 0) { DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid); ret_val = true; } else if (calcFreeIQEntries(tid) <= 0) { DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid); ret_val = true; } else if (calcFreeLSQEntries(tid) <= 0) { DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid); ret_val = true; } else if (renameMap[tid]->numFreeEntries() <= 0) { DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid); ret_val = true; } else if (renameStatus[tid] == SerializeStall && (!emptyROB[tid] || instsInProgress[tid])) { DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not " "empty.\n", tid); ret_val = true; } return ret_val; } template void DefaultRename::readFreeEntries(unsigned tid) { bool updated = false; if (fromIEW->iewInfo[tid].usedIQ) { freeEntries[tid].iqEntries = fromIEW->iewInfo[tid].freeIQEntries; updated = true; } if (fromIEW->iewInfo[tid].usedLSQ) { freeEntries[tid].lsqEntries = fromIEW->iewInfo[tid].freeLSQEntries; updated = true; } if (fromCommit->commitInfo[tid].usedROB) { freeEntries[tid].robEntries = fromCommit->commitInfo[tid].freeROBEntries; emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB; updated = true; } DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n", tid, freeEntries[tid].iqEntries, freeEntries[tid].robEntries, freeEntries[tid].lsqEntries); DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n", tid, instsInProgress[tid]); } template bool DefaultRename::checkSignalsAndUpdate(unsigned tid) { // Check if there's a squash signal, squash if there is // Check stall signals, block if necessary. // If status was blocked // check if stall conditions have passed // if so then go to unblocking // If status was Squashing // check if squashing is not high. Switch to running this cycle. // If status was serialize stall // check if ROB is empty and no insts are in flight to the ROB readFreeEntries(tid); readStallSignals(tid); if (fromCommit->commitInfo[tid].squash) { DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from " "commit.\n", tid); #if THE_ISA == ALPHA_ISA InstSeqNum squashed_seq_num = fromCommit->commitInfo[tid].doneSeqNum; #else InstSeqNum squashed_seq_num = fromCommit->commitInfo[tid].bdelayDoneSeqNum; #endif squash(squashed_seq_num, tid); return true; } if (fromCommit->commitInfo[tid].robSquashing) { DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid); renameStatus[tid] = Squashing; return true; } if (checkStall(tid)) { return block(tid); } if (renameStatus[tid] == Blocked) { DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n", tid); renameStatus[tid] = Unblocking; unblock(tid); return true; } if (renameStatus[tid] == Squashing) { // Switch status to running if rename isn't being told to block or // squash this cycle. DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n", tid); renameStatus[tid] = Running; return false; } if (renameStatus[tid] == SerializeStall) { // Stall ends once the ROB is free. DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to " "unblocking.\n", tid); DynInstPtr serial_inst = serializeInst[tid]; renameStatus[tid] = Unblocking; unblock(tid); DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with " "PC %#x.\n", tid, serial_inst->seqNum, serial_inst->readPC()); // Put instruction into queue here. serial_inst->clearSerializeBefore(); if (!skidBuffer[tid].empty()) { skidBuffer[tid].push_front(serial_inst); } else { insts[tid].push_front(serial_inst); } DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename." " Adding to front of list.\n", tid); serializeInst[tid] = NULL; return true; } // If we've reached this point, we have not gotten any signals that // cause rename to change its status. Rename remains the same as before. return false; } template void DefaultRename::serializeAfter(InstQueue &inst_list, unsigned tid) { if (inst_list.empty()) { // Mark a bit to say that I must serialize on the next instruction. serializeOnNextInst[tid] = true; return; } // Set the next instruction as serializing. inst_list.front()->setSerializeBefore(); } template inline void DefaultRename::incrFullStat(const FullSource &source) { switch (source) { case ROB: ++renameROBFullEvents; break; case IQ: ++renameIQFullEvents; break; case LSQ: ++renameLSQFullEvents; break; default: panic("Rename full stall stat should be incremented for a reason!"); break; } } template void DefaultRename::dumpHistory() { typename list::iterator buf_it; for (int i = 0; i < numThreads; i++) { buf_it = historyBuffer[i].begin(); while (buf_it != historyBuffer[i].end()) { cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys " "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg, (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg); buf_it++; } } }