/* * Copyright (c) 2010 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Korey Sewell */ #include "arch/locked_mem.hh" #include "config/the_isa.hh" #include "config/use_checker.hh" #include "cpu/o3/lsq.hh" #include "cpu/o3/lsq_unit.hh" #include "base/str.hh" #include "mem/packet.hh" #include "mem/request.hh" #if USE_CHECKER #include "cpu/checker/cpu.hh" #endif template LSQUnit::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt, LSQUnit *lsq_ptr) : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr) { this->setFlags(Event::AutoDelete); } template void LSQUnit::WritebackEvent::process() { if (!lsqPtr->isSwitchedOut()) { lsqPtr->writeback(inst, pkt); } if (pkt->senderState) delete pkt->senderState; delete pkt->req; delete pkt; } template const char * LSQUnit::WritebackEvent::description() const { return "Store writeback"; } template void LSQUnit::completeDataAccess(PacketPtr pkt) { LSQSenderState *state = dynamic_cast(pkt->senderState); DynInstPtr inst = state->inst; DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum); DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum); //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum); assert(!pkt->wasNacked()); // If this is a split access, wait until all packets are received. if (TheISA::HasUnalignedMemAcc && !state->complete()) { delete pkt->req; delete pkt; return; } if (isSwitchedOut() || inst->isSquashed()) { iewStage->decrWb(inst->seqNum); } else { if (!state->noWB) { if (!TheISA::HasUnalignedMemAcc || !state->isSplit || !state->isLoad) { writeback(inst, pkt); } else { writeback(inst, state->mainPkt); } } if (inst->isStore()) { completeStore(state->idx); } } if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) { delete state->mainPkt->req; delete state->mainPkt; } delete state; delete pkt->req; delete pkt; } template LSQUnit::LSQUnit() : loads(0), stores(0), storesToWB(0), stalled(false), isStoreBlocked(false), isLoadBlocked(false), loadBlockedHandled(false), hasPendingPkt(false) { } template void LSQUnit::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, unsigned id) { cpu = cpu_ptr; iewStage = iew_ptr; DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id); switchedOut = false; lsq = lsq_ptr; lsqID = id; // Add 1 for the sentinel entry (they are circular queues). LQEntries = maxLQEntries + 1; SQEntries = maxSQEntries + 1; loadQueue.resize(LQEntries); storeQueue.resize(SQEntries); loadHead = loadTail = 0; storeHead = storeWBIdx = storeTail = 0; usedPorts = 0; cachePorts = params->cachePorts; retryPkt = NULL; memDepViolator = NULL; blockedLoadSeqNum = 0; } template std::string LSQUnit::name() const { if (Impl::MaxThreads == 1) { return iewStage->name() + ".lsq"; } else { return iewStage->name() + ".lsq.thread." + to_string(lsqID); } } template void LSQUnit::regStats() { lsqForwLoads .name(name() + ".forwLoads") .desc("Number of loads that had data forwarded from stores"); invAddrLoads .name(name() + ".invAddrLoads") .desc("Number of loads ignored due to an invalid address"); lsqSquashedLoads .name(name() + ".squashedLoads") .desc("Number of loads squashed"); lsqIgnoredResponses .name(name() + ".ignoredResponses") .desc("Number of memory responses ignored because the instruction is squashed"); lsqMemOrderViolation .name(name() + ".memOrderViolation") .desc("Number of memory ordering violations"); lsqSquashedStores .name(name() + ".squashedStores") .desc("Number of stores squashed"); invAddrSwpfs .name(name() + ".invAddrSwpfs") .desc("Number of software prefetches ignored due to an invalid address"); lsqBlockedLoads .name(name() + ".blockedLoads") .desc("Number of blocked loads due to partial load-store forwarding"); lsqRescheduledLoads .name(name() + ".rescheduledLoads") .desc("Number of loads that were rescheduled"); lsqCacheBlocked .name(name() + ".cacheBlocked") .desc("Number of times an access to memory failed due to the cache being blocked"); } template void LSQUnit::setDcachePort(Port *dcache_port) { dcachePort = dcache_port; #if USE_CHECKER if (cpu->checker) { cpu->checker->setDcachePort(dcachePort); } #endif } template void LSQUnit::clearLQ() { loadQueue.clear(); } template void LSQUnit::clearSQ() { storeQueue.clear(); } template void LSQUnit::switchOut() { switchedOut = true; for (int i = 0; i < loadQueue.size(); ++i) { assert(!loadQueue[i]); loadQueue[i] = NULL; } assert(storesToWB == 0); } template void LSQUnit::takeOverFrom() { switchedOut = false; loads = stores = storesToWB = 0; loadHead = loadTail = 0; storeHead = storeWBIdx = storeTail = 0; usedPorts = 0; memDepViolator = NULL; blockedLoadSeqNum = 0; stalled = false; isLoadBlocked = false; loadBlockedHandled = false; } template void LSQUnit::resizeLQ(unsigned size) { unsigned size_plus_sentinel = size + 1; assert(size_plus_sentinel >= LQEntries); if (size_plus_sentinel > LQEntries) { while (size_plus_sentinel > loadQueue.size()) { DynInstPtr dummy; loadQueue.push_back(dummy); LQEntries++; } } else { LQEntries = size_plus_sentinel; } } template void LSQUnit::resizeSQ(unsigned size) { unsigned size_plus_sentinel = size + 1; if (size_plus_sentinel > SQEntries) { while (size_plus_sentinel > storeQueue.size()) { SQEntry dummy; storeQueue.push_back(dummy); SQEntries++; } } else { SQEntries = size_plus_sentinel; } } template void LSQUnit::insert(DynInstPtr &inst) { assert(inst->isMemRef()); assert(inst->isLoad() || inst->isStore()); if (inst->isLoad()) { insertLoad(inst); } else { insertStore(inst); } inst->setInLSQ(); } template void LSQUnit::insertLoad(DynInstPtr &load_inst) { assert((loadTail + 1) % LQEntries != loadHead); assert(loads < LQEntries); DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n", load_inst->pcState(), loadTail, load_inst->seqNum); load_inst->lqIdx = loadTail; if (stores == 0) { load_inst->sqIdx = -1; } else { load_inst->sqIdx = storeTail; } loadQueue[loadTail] = load_inst; incrLdIdx(loadTail); ++loads; } template void LSQUnit::insertStore(DynInstPtr &store_inst) { // Make sure it is not full before inserting an instruction. assert((storeTail + 1) % SQEntries != storeHead); assert(stores < SQEntries); DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n", store_inst->pcState(), storeTail, store_inst->seqNum); store_inst->sqIdx = storeTail; store_inst->lqIdx = loadTail; storeQueue[storeTail] = SQEntry(store_inst); incrStIdx(storeTail); ++stores; } template typename Impl::DynInstPtr LSQUnit::getMemDepViolator() { DynInstPtr temp = memDepViolator; memDepViolator = NULL; return temp; } template unsigned LSQUnit::numFreeEntries() { unsigned free_lq_entries = LQEntries - loads; unsigned free_sq_entries = SQEntries - stores; // Both the LQ and SQ entries have an extra dummy entry to differentiate // empty/full conditions. Subtract 1 from the free entries. if (free_lq_entries < free_sq_entries) { return free_lq_entries - 1; } else { return free_sq_entries - 1; } } template int LSQUnit::numLoadsReady() { int load_idx = loadHead; int retval = 0; while (load_idx != loadTail) { assert(loadQueue[load_idx]); if (loadQueue[load_idx]->readyToIssue()) { ++retval; } } return retval; } template Fault LSQUnit::executeLoad(DynInstPtr &inst) { using namespace TheISA; // Execute a specific load. Fault load_fault = NoFault; DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n", inst->pcState(),inst->seqNum); assert(!inst->isSquashed()); load_fault = inst->initiateAcc(); // If the instruction faulted or predicated false, then we need to send it // along to commit without the instruction completing. if (load_fault != NoFault || inst->readPredicate() == false) { // Send this instruction to commit, also make sure iew stage // realizes there is activity. // Mark it as executed unless it is an uncached load that // needs to hit the head of commit. DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n", inst->seqNum, (load_fault != NoFault ? "fault" : "predication")); if (!(inst->hasRequest() && inst->uncacheable()) || inst->isAtCommit()) { inst->setExecuted(); } iewStage->instToCommit(inst); iewStage->activityThisCycle(); } else if (!loadBlocked()) { assert(inst->effAddrValid); int load_idx = inst->lqIdx; incrLdIdx(load_idx); while (load_idx != loadTail) { // Really only need to check loads that have actually executed // @todo: For now this is extra conservative, detecting a // violation if the addresses match assuming all accesses // are quad word accesses. // @todo: Fix this, magic number being used here // @todo: Uncachable load is not executed until it reaches // the head of the ROB. Once this if checks only the executed // loads(as noted above), this check can be removed if (loadQueue[load_idx]->effAddrValid && ((loadQueue[load_idx]->effAddr >> 8) == (inst->effAddr >> 8)) && !loadQueue[load_idx]->uncacheable()) { // A load incorrectly passed this load. Squash and refetch. // For now return a fault to show that it was unsuccessful. DynInstPtr violator = loadQueue[load_idx]; if (!memDepViolator || (violator->seqNum < memDepViolator->seqNum)) { memDepViolator = violator; } else { break; } ++lsqMemOrderViolation; return genMachineCheckFault(); } incrLdIdx(load_idx); } } return load_fault; } template Fault LSQUnit::executeStore(DynInstPtr &store_inst) { using namespace TheISA; // Make sure that a store exists. assert(stores != 0); int store_idx = store_inst->sqIdx; DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n", store_inst->pcState(), store_inst->seqNum); assert(!store_inst->isSquashed()); // Check the recently completed loads to see if any match this store's // address. If so, then we have a memory ordering violation. int load_idx = store_inst->lqIdx; Fault store_fault = store_inst->initiateAcc(); if (storeQueue[store_idx].size == 0) { DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli],Size = 0\n", store_inst->pcState(), store_inst->seqNum); return store_fault; } assert(store_fault == NoFault); if (store_inst->isStoreConditional()) { // Store conditionals need to set themselves as able to // writeback if we haven't had a fault by here. storeQueue[store_idx].canWB = true; ++storesToWB; } assert(store_inst->effAddrValid); while (load_idx != loadTail) { // Really only need to check loads that have actually executed // It's safe to check all loads because effAddr is set to // InvalAddr when the dyn inst is created. // @todo: For now this is extra conservative, detecting a // violation if the addresses match assuming all accesses // are quad word accesses. // @todo: Fix this, magic number being used here // @todo: Uncachable load is not executed until it reaches // the head of the ROB. Once this if checks only the executed // loads(as noted above), this check can be removed if (loadQueue[load_idx]->effAddrValid && ((loadQueue[load_idx]->effAddr >> 8) == (store_inst->effAddr >> 8)) && !loadQueue[load_idx]->uncacheable()) { // A load incorrectly passed this store. Squash and refetch. // For now return a fault to show that it was unsuccessful. DynInstPtr violator = loadQueue[load_idx]; if (!memDepViolator || (violator->seqNum < memDepViolator->seqNum)) { memDepViolator = violator; } else { break; } ++lsqMemOrderViolation; return genMachineCheckFault(); } incrLdIdx(load_idx); } return store_fault; } template void LSQUnit::commitLoad() { assert(loadQueue[loadHead]); DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n", loadQueue[loadHead]->pcState()); loadQueue[loadHead] = NULL; incrLdIdx(loadHead); --loads; } template void LSQUnit::commitLoads(InstSeqNum &youngest_inst) { assert(loads == 0 || loadQueue[loadHead]); while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) { commitLoad(); } } template void LSQUnit::commitStores(InstSeqNum &youngest_inst) { assert(stores == 0 || storeQueue[storeHead].inst); int store_idx = storeHead; while (store_idx != storeTail) { assert(storeQueue[store_idx].inst); // Mark any stores that are now committed and have not yet // been marked as able to write back. if (!storeQueue[store_idx].canWB) { if (storeQueue[store_idx].inst->seqNum > youngest_inst) { break; } DPRINTF(LSQUnit, "Marking store as able to write back, PC " "%s [sn:%lli]\n", storeQueue[store_idx].inst->pcState(), storeQueue[store_idx].inst->seqNum); storeQueue[store_idx].canWB = true; ++storesToWB; } incrStIdx(store_idx); } } template void LSQUnit::writebackPendingStore() { if (hasPendingPkt) { assert(pendingPkt != NULL); // If the cache is blocked, this will store the packet for retry. if (sendStore(pendingPkt)) { storePostSend(pendingPkt); } pendingPkt = NULL; hasPendingPkt = false; } } template void LSQUnit::writebackStores() { // First writeback the second packet from any split store that didn't // complete last cycle because there weren't enough cache ports available. if (TheISA::HasUnalignedMemAcc) { writebackPendingStore(); } while (storesToWB > 0 && storeWBIdx != storeTail && storeQueue[storeWBIdx].inst && storeQueue[storeWBIdx].canWB && usedPorts < cachePorts) { if (isStoreBlocked || lsq->cacheBlocked()) { DPRINTF(LSQUnit, "Unable to write back any more stores, cache" " is blocked!\n"); break; } // Store didn't write any data so no need to write it back to // memory. if (storeQueue[storeWBIdx].size == 0) { completeStore(storeWBIdx); incrStIdx(storeWBIdx); continue; } ++usedPorts; if (storeQueue[storeWBIdx].inst->isDataPrefetch()) { incrStIdx(storeWBIdx); continue; } assert(storeQueue[storeWBIdx].req); assert(!storeQueue[storeWBIdx].committed); if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) { assert(storeQueue[storeWBIdx].sreqLow); assert(storeQueue[storeWBIdx].sreqHigh); } DynInstPtr inst = storeQueue[storeWBIdx].inst; Request *req = storeQueue[storeWBIdx].req; storeQueue[storeWBIdx].committed = true; assert(!inst->memData); inst->memData = new uint8_t[64]; memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize()); MemCmd command = req->isSwap() ? MemCmd::SwapReq : (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq); PacketPtr data_pkt; PacketPtr snd_data_pkt = NULL; LSQSenderState *state = new LSQSenderState; state->isLoad = false; state->idx = storeWBIdx; state->inst = inst; if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) { // Build a single data packet if the store isn't split. data_pkt = new Packet(req, command, Packet::Broadcast); data_pkt->dataStatic(inst->memData); data_pkt->senderState = state; } else { RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow; RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh; // Create two packets if the store is split in two. data_pkt = new Packet(sreqLow, command, Packet::Broadcast); snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); data_pkt->dataStatic(inst->memData); snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize()); data_pkt->senderState = state; snd_data_pkt->senderState = state; state->isSplit = true; state->outstanding = 2; // Can delete the main request now. delete req; req = sreqLow; } DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s " "to Addr:%#x, data:%#x [sn:%lli]\n", storeWBIdx, inst->pcState(), req->getPaddr(), (int)*(inst->memData), inst->seqNum); // @todo: Remove this SC hack once the memory system handles it. if (inst->isStoreConditional()) { assert(!storeQueue[storeWBIdx].isSplit); // Disable recording the result temporarily. Writing to // misc regs normally updates the result, but this is not // the desired behavior when handling store conditionals. inst->recordResult = false; bool success = TheISA::handleLockedWrite(inst.get(), req); inst->recordResult = true; if (!success) { // Instantly complete this store. DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. " "Instantly completing it.\n", inst->seqNum); WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this); cpu->schedule(wb, curTick + 1); completeStore(storeWBIdx); incrStIdx(storeWBIdx); continue; } } else { // Non-store conditionals do not need a writeback. state->noWB = true; } if (!sendStore(data_pkt)) { DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will" "retry later\n", inst->seqNum); // Need to store the second packet, if split. if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) { state->pktToSend = true; state->pendingPacket = snd_data_pkt; } } else { // If split, try to send the second packet too if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) { assert(snd_data_pkt); // Ensure there are enough ports to use. if (usedPorts < cachePorts) { ++usedPorts; if (sendStore(snd_data_pkt)) { storePostSend(snd_data_pkt); } else { DPRINTF(IEW, "D-Cache became blocked when writing" " [sn:%lli] second packet, will retry later\n", inst->seqNum); } } else { // Store the packet for when there's free ports. assert(pendingPkt == NULL); pendingPkt = snd_data_pkt; hasPendingPkt = true; } } else { // Not a split store. storePostSend(data_pkt); } } } // Not sure this should set it to 0. usedPorts = 0; assert(stores >= 0 && storesToWB >= 0); } /*template void LSQUnit::removeMSHR(InstSeqNum seqNum) { list::iterator mshr_it = find(mshrSeqNums.begin(), mshrSeqNums.end(), seqNum); if (mshr_it != mshrSeqNums.end()) { mshrSeqNums.erase(mshr_it); DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size()); } }*/ template void LSQUnit::squash(const InstSeqNum &squashed_num) { DPRINTF(LSQUnit, "Squashing until [sn:%lli]!" "(Loads:%i Stores:%i)\n", squashed_num, loads, stores); int load_idx = loadTail; decrLdIdx(load_idx); while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) { DPRINTF(LSQUnit,"Load Instruction PC %s squashed, " "[sn:%lli]\n", loadQueue[load_idx]->pcState(), loadQueue[load_idx]->seqNum); if (isStalled() && load_idx == stallingLoadIdx) { stalled = false; stallingStoreIsn = 0; stallingLoadIdx = 0; } // Clear the smart pointer to make sure it is decremented. loadQueue[load_idx]->setSquashed(); loadQueue[load_idx] = NULL; --loads; // Inefficient! loadTail = load_idx; decrLdIdx(load_idx); ++lsqSquashedLoads; } if (isLoadBlocked) { if (squashed_num < blockedLoadSeqNum) { isLoadBlocked = false; loadBlockedHandled = false; blockedLoadSeqNum = 0; } } if (memDepViolator && squashed_num < memDepViolator->seqNum) { memDepViolator = NULL; } int store_idx = storeTail; decrStIdx(store_idx); while (stores != 0 && storeQueue[store_idx].inst->seqNum > squashed_num) { // Instructions marked as can WB are already committed. if (storeQueue[store_idx].canWB) { break; } DPRINTF(LSQUnit,"Store Instruction PC %s squashed, " "idx:%i [sn:%lli]\n", storeQueue[store_idx].inst->pcState(), store_idx, storeQueue[store_idx].inst->seqNum); // I don't think this can happen. It should have been cleared // by the stalling load. if (isStalled() && storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { panic("Is stalled should have been cleared by stalling load!\n"); stalled = false; stallingStoreIsn = 0; } // Clear the smart pointer to make sure it is decremented. storeQueue[store_idx].inst->setSquashed(); storeQueue[store_idx].inst = NULL; storeQueue[store_idx].canWB = 0; // Must delete request now that it wasn't handed off to // memory. This is quite ugly. @todo: Figure out the proper // place to really handle request deletes. delete storeQueue[store_idx].req; if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) { delete storeQueue[store_idx].sreqLow; delete storeQueue[store_idx].sreqHigh; storeQueue[store_idx].sreqLow = NULL; storeQueue[store_idx].sreqHigh = NULL; } storeQueue[store_idx].req = NULL; --stores; // Inefficient! storeTail = store_idx; decrStIdx(store_idx); ++lsqSquashedStores; } } template void LSQUnit::storePostSend(PacketPtr pkt) { if (isStalled() && storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) { DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " "load idx:%i\n", stallingStoreIsn, stallingLoadIdx); stalled = false; stallingStoreIsn = 0; iewStage->replayMemInst(loadQueue[stallingLoadIdx]); } if (!storeQueue[storeWBIdx].inst->isStoreConditional()) { // The store is basically completed at this time. This // only works so long as the checker doesn't try to // verify the value in memory for stores. storeQueue[storeWBIdx].inst->setCompleted(); #if USE_CHECKER if (cpu->checker) { cpu->checker->verify(storeQueue[storeWBIdx].inst); } #endif } incrStIdx(storeWBIdx); } template void LSQUnit::writeback(DynInstPtr &inst, PacketPtr pkt) { iewStage->wakeCPU(); // Squashed instructions do not need to complete their access. if (inst->isSquashed()) { iewStage->decrWb(inst->seqNum); assert(!inst->isStore()); ++lsqIgnoredResponses; return; } if (!inst->isExecuted()) { inst->setExecuted(); // Complete access to copy data to proper place. inst->completeAcc(pkt); } // Need to insert instruction into queue to commit iewStage->instToCommit(inst); iewStage->activityThisCycle(); // see if this load changed the PC iewStage->checkMisprediction(inst); } template void LSQUnit::completeStore(int store_idx) { assert(storeQueue[store_idx].inst); storeQueue[store_idx].completed = true; --storesToWB; // A bit conservative because a store completion may not free up entries, // but hopefully avoids two store completions in one cycle from making // the CPU tick twice. cpu->wakeCPU(); cpu->activityThisCycle(); if (store_idx == storeHead) { do { incrStIdx(storeHead); --stores; } while (storeQueue[storeHead].completed && storeHead != storeTail); iewStage->updateLSQNextCycle = true; } DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head " "idx:%i\n", storeQueue[store_idx].inst->seqNum, store_idx, storeHead); if (isStalled() && storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " "load idx:%i\n", stallingStoreIsn, stallingLoadIdx); stalled = false; stallingStoreIsn = 0; iewStage->replayMemInst(loadQueue[stallingLoadIdx]); } storeQueue[store_idx].inst->setCompleted(); // Tell the checker we've completed this instruction. Some stores // may get reported twice to the checker, but the checker can // handle that case. #if USE_CHECKER if (cpu->checker) { cpu->checker->verify(storeQueue[store_idx].inst); } #endif } template bool LSQUnit::sendStore(PacketPtr data_pkt) { if (!dcachePort->sendTiming(data_pkt)) { // Need to handle becoming blocked on a store. isStoreBlocked = true; ++lsqCacheBlocked; assert(retryPkt == NULL); retryPkt = data_pkt; lsq->setRetryTid(lsqID); return false; } return true; } template void LSQUnit::recvRetry() { if (isStoreBlocked) { DPRINTF(LSQUnit, "Receiving retry: store blocked\n"); assert(retryPkt != NULL); if (dcachePort->sendTiming(retryPkt)) { LSQSenderState *state = dynamic_cast(retryPkt->senderState); // Don't finish the store unless this is the last packet. if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) { storePostSend(retryPkt); } retryPkt = NULL; isStoreBlocked = false; lsq->setRetryTid(InvalidThreadID); // Send any outstanding packet. if (TheISA::HasUnalignedMemAcc && state->pktToSend) { assert(state->pendingPacket); if (sendStore(state->pendingPacket)) { storePostSend(state->pendingPacket); } } } else { // Still blocked! ++lsqCacheBlocked; lsq->setRetryTid(lsqID); } } else if (isLoadBlocked) { DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, " "no need to resend packet.\n"); } else { DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n"); } } template inline void LSQUnit::incrStIdx(int &store_idx) { if (++store_idx >= SQEntries) store_idx = 0; } template inline void LSQUnit::decrStIdx(int &store_idx) { if (--store_idx < 0) store_idx += SQEntries; } template inline void LSQUnit::incrLdIdx(int &load_idx) { if (++load_idx >= LQEntries) load_idx = 0; } template inline void LSQUnit::decrLdIdx(int &load_idx) { if (--load_idx < 0) load_idx += LQEntries; } template void LSQUnit::dumpInsts() { cprintf("Load store queue: Dumping instructions.\n"); cprintf("Load queue size: %i\n", loads); cprintf("Load queue: "); int load_idx = loadHead; while (load_idx != loadTail && loadQueue[load_idx]) { cprintf("%s ", loadQueue[load_idx]->pcState()); incrLdIdx(load_idx); } cprintf("Store queue size: %i\n", stores); cprintf("Store queue: "); int store_idx = storeHead; while (store_idx != storeTail && storeQueue[store_idx].inst) { cprintf("%s ", storeQueue[store_idx].inst->pcState()); incrStIdx(store_idx); } cprintf("\n"); }