/* * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #include "cpu/o3/dyn_inst.hh" template BaseO3DynInst::BaseO3DynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC, Addr Pred_PC, Addr Pred_NPC, Addr Pred_MicroPC, InstSeqNum seq_num, O3CPU *cpu) : BaseDynInst(staticInst, PC, NPC, microPC, Pred_PC, Pred_NPC, Pred_MicroPC, seq_num, cpu) { initVars(); } template BaseO3DynInst::BaseO3DynInst(ExtMachInst inst, Addr PC, Addr NPC, Addr microPC, Addr Pred_PC, Addr Pred_NPC, Addr Pred_MicroPC, InstSeqNum seq_num, O3CPU *cpu) : BaseDynInst(inst, PC, NPC, microPC, Pred_PC, Pred_NPC, Pred_MicroPC, seq_num, cpu) { initVars(); } template BaseO3DynInst::BaseO3DynInst(StaticInstPtr &_staticInst) : BaseDynInst(_staticInst) { initVars(); } template void BaseO3DynInst::initVars() { // Make sure to have the renamed register entries set to the same // as the normal register entries. It will allow the IQ to work // without any modifications. for (int i = 0; i < this->staticInst->numDestRegs(); i++) { this->_destRegIdx[i] = this->staticInst->destRegIdx(i); } for (int i = 0; i < this->staticInst->numSrcRegs(); i++) { this->_srcRegIdx[i] = this->staticInst->srcRegIdx(i); this->_readySrcRegIdx[i] = 0; } } template Fault BaseO3DynInst::execute() { // @todo: Pretty convoluted way to avoid squashing from happening // when using the TC during an instruction's execution // (specifically for instructions that have side-effects that use // the TC). Fix this. bool in_syscall = this->thread->inSyscall; this->thread->inSyscall = true; this->fault = this->staticInst->execute(this, this->traceData); this->thread->inSyscall = in_syscall; return this->fault; } template Fault BaseO3DynInst::initiateAcc() { // @todo: Pretty convoluted way to avoid squashing from happening // when using the TC during an instruction's execution // (specifically for instructions that have side-effects that use // the TC). Fix this. bool in_syscall = this->thread->inSyscall; this->thread->inSyscall = true; this->fault = this->staticInst->initiateAcc(this, this->traceData); this->thread->inSyscall = in_syscall; return this->fault; } template Fault BaseO3DynInst::completeAcc(PacketPtr pkt) { this->fault = this->staticInst->completeAcc(pkt, this, this->traceData); return this->fault; } #if FULL_SYSTEM template void BaseO3DynInst::trap(Fault fault) { this->cpu->trap(fault, this->threadNumber); } #else template void BaseO3DynInst::syscall(int64_t callnum) { // HACK: check CPU's nextPC before and after syscall. If it // changes, update this instruction's nextPC because the syscall // must have changed the nextPC. Addr cpu_next_pc = this->cpu->readNextPC(this->threadNumber); this->cpu->syscall(callnum, this->threadNumber); Addr new_next_pc = this->cpu->readNextPC(this->threadNumber); if (cpu_next_pc != new_next_pc) { this->setNextPC(new_next_pc); } } #endif