/* * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "base/refcnt.hh" #include "cpu/base.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/checker/cpu.hh" #include "cpu/cpu_exec_context.hh" #include "cpu/exec_context.hh" #include "cpu/static_inst.hh" #include "sim/byteswap.hh" #include "sim/sim_object.hh" #include "sim/stats.hh" #include "cpu/o3/alpha_dyn_inst.hh" #include "cpu/o3/alpha_impl.hh" #include "cpu/ozone/dyn_inst.hh" #include "cpu/ozone/ozone_impl.hh" #include "cpu/ozone/simple_impl.hh" #if FULL_SYSTEM #include "sim/system.hh" #include "arch/vtophys.hh" #endif // FULL_SYSTEM using namespace std; //The CheckerCPU does alpha only using namespace AlphaISA; void CheckerCPU::init() { } CheckerCPU::CheckerCPU(Params *p) : BaseCPU(p), cpuXC(NULL), xcProxy(NULL) { memReq = new MemReq(); memReq->xc = xcProxy; memReq->asid = 0; memReq->data = new uint8_t[64]; numInst = 0; startNumInst = 0; numLoad = 0; startNumLoad = 0; youngestSN = 0; changedPC = willChangePC = changedNextPC = false; exitOnError = p->exitOnError; updateOnError = p->updateOnError; #if FULL_SYSTEM itb = p->itb; dtb = p->dtb; systemPtr = NULL; memPtr = NULL; #endif } CheckerCPU::~CheckerCPU() { } void CheckerCPU::setMemory(FunctionalMemory *mem) { memPtr = mem; #if !FULL_SYSTEM cpuXC = new CPUExecContext(this, /* thread_num */ 0, mem, /* asid */ 0); cpuXC->setStatus(ExecContext::Suspended); xcProxy = cpuXC->getProxy(); execContexts.push_back(xcProxy); #else if (systemPtr) { cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false); cpuXC->setStatus(ExecContext::Suspended); xcProxy = cpuXC->getProxy(); execContexts.push_back(xcProxy); memReq->xc = xcProxy; delete cpuXC->kernelStats; cpuXC->kernelStats = NULL; } #endif } #if FULL_SYSTEM void CheckerCPU::setSystem(System *system) { systemPtr = system; if (memPtr) { cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false); cpuXC->setStatus(ExecContext::Suspended); xcProxy = cpuXC->getProxy(); execContexts.push_back(xcProxy); memReq->xc = xcProxy; delete cpuXC->kernelStats; cpuXC->kernelStats = NULL; } } #endif void CheckerCPU::serialize(ostream &os) { /* BaseCPU::serialize(os); SERIALIZE_SCALAR(inst); nameOut(os, csprintf("%s.xc", name())); cpuXC->serialize(os); cacheCompletionEvent.serialize(os); */ } void CheckerCPU::unserialize(Checkpoint *cp, const string §ion) { /* BaseCPU::unserialize(cp, section); UNSERIALIZE_SCALAR(inst); cpuXC->unserialize(cp, csprintf("%s.xc", section)); */ } Fault CheckerCPU::copySrcTranslate(Addr src) { panic("Unimplemented!"); } Fault CheckerCPU::copy(Addr dest) { panic("Unimplemented!"); } template Fault CheckerCPU::read(Addr addr, T &data, unsigned flags) { memReq->reset(addr, sizeof(T), flags); // translate to physical address translateDataReadReq(memReq); memReq->cmd = Read; memReq->completionEvent = NULL; memReq->time = curTick; memReq->flags &= ~INST_READ; if (!(memReq->flags & UNCACHEABLE)) { // Access memory to see if we have the same data cpuXC->read(memReq, data); } else { // Assume the data is correct if it's an uncached access memcpy(&data, &unverifiedResult.integer, sizeof(T)); } return NoFault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags); template Fault CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags); template Fault CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags); template Fault CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault CheckerCPU::read(Addr addr, double &data, unsigned flags) { return read(addr, *(uint64_t*)&data, flags); } template<> Fault CheckerCPU::read(Addr addr, float &data, unsigned flags) { return read(addr, *(uint32_t*)&data, flags); } template<> Fault CheckerCPU::read(Addr addr, int32_t &data, unsigned flags) { return read(addr, (uint32_t&)data, flags); } template Fault CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { memReq->reset(addr, sizeof(T), flags); // translate to physical address cpuXC->translateDataWriteReq(memReq); // Can compare the write data and result only if it's cacheable, // not a store conditional, or is a store conditional that // succeeded. // @todo: Verify that actual memory matches up with these values. // Right now it only verifies that the instruction data is the // same as what was in the request that got sent to memory; there // is no verification that it is the same as what is in memory. // This is because the LSQ would have to be snooped in the CPU to // verify this data. if (unverifiedReq && !(unverifiedReq->flags & UNCACHEABLE) && (!(unverifiedReq->flags & LOCKED) || ((unverifiedReq->flags & LOCKED) && unverifiedReq->result == 1))) { #if 0 memReq->cmd = Read; memReq->completionEvent = NULL; memReq->time = curTick; memReq->flags &= ~INST_READ; cpuXC->read(memReq, inst_data); #endif T inst_data; memcpy(&inst_data, unverifiedReq->data, sizeof(T)); if (data != inst_data) { warn("%lli: Store value does not match value in memory! " "Instruction: %#x, memory: %#x", curTick, inst_data, data); handleError(); } } // Assume the result was the same as the one passed in. This checker // doesn't check if the SC should succeed or fail, it just checks the // value. if (res) *res = unverifiedReq->result; return NoFault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint64_t*)&data, addr, flags, res); } template<> Fault CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint32_t*)&data, addr, flags, res); } template<> Fault CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write((uint32_t)data, addr, flags, res); } #if FULL_SYSTEM Addr CheckerCPU::dbg_vtophys(Addr addr) { return vtophys(xcProxy, addr); } #endif // FULL_SYSTEM bool CheckerCPU::translateInstReq(MemReqPtr &req) { #if FULL_SYSTEM return (cpuXC->translateInstReq(req) == NoFault); #else cpuXC->translateInstReq(req); return true; #endif } void CheckerCPU::translateDataReadReq(MemReqPtr &req) { cpuXC->translateDataReadReq(req); if (!unverifiedReq) { warn("%lli: Request virtual addresses do not match! Inst: N/A, " "checker: %#x", curTick, req->vaddr); return; } else if (req->vaddr != unverifiedReq->vaddr) { warn("%lli: Request virtual addresses do not match! Inst: %#x, " "checker: %#x", curTick, unverifiedReq->vaddr, req->vaddr); handleError(); } req->paddr = unverifiedReq->paddr; if (checkFlags(req)) { warn("%lli: Request flags do not match! Inst: %#x, checker: %#x", curTick, unverifiedReq->flags, req->flags); handleError(); } } void CheckerCPU::translateDataWriteReq(MemReqPtr &req) { cpuXC->translateDataWriteReq(req); if (!unverifiedReq) { warn("%lli: Request virtual addresses do not match! Inst: N/A, " "checker: %#x", curTick, req->vaddr); return; } else if (req->vaddr != unverifiedReq->vaddr) { warn("%lli: Request virtual addresses do not match! Inst: %#x, " "checker: %#x", curTick, unverifiedReq->vaddr, req->vaddr); handleError(); } req->paddr = unverifiedReq->paddr; if (checkFlags(req)) { warn("%lli: Request flags do not match! Inst: %#x, checker: %#x", curTick, unverifiedReq->flags, req->flags); handleError(); } } bool CheckerCPU::checkFlags(MemReqPtr &req) { // Remove any dynamic flags that don't have to do with the request itself. unsigned flags = unverifiedReq->flags; unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT; flags = flags & (mask); if (flags == req->flags) { return false; } else { return true; } } template void Checker::tick(DynInstPtr &completed_inst) { DynInstPtr inst; // Either check this instruction, or add it to a list of // instructions waiting to be checked. Instructions must be // checked in program order, so if a store has committed yet not // completed, there may be some instructions that are waiting // behind it that have completed and must be checked. if (!instList.empty()) { if (youngestSN < completed_inst->seqNum) { DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n", completed_inst->seqNum, completed_inst->readPC()); instList.push_back(completed_inst); youngestSN = completed_inst->seqNum; } if (!instList.front()->isCompleted()) { return; } else { inst = instList.front(); instList.pop_front(); } } else { if (!completed_inst->isCompleted()) { if (youngestSN < completed_inst->seqNum) { DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n", completed_inst->seqNum, completed_inst->readPC()); instList.push_back(completed_inst); youngestSN = completed_inst->seqNum; } return; } else { if (youngestSN < completed_inst->seqNum) { inst = completed_inst; youngestSN = completed_inst->seqNum; } else { return; } } } unverifiedInst = inst; // Try to check all instructions that are completed, ending if we // run out of instructions to check or if an instruction is not // yet completed. while (1) { DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n", inst->seqNum, inst->readPC()); unverifiedResult.integer = inst->readIntResult(); unverifiedReq = inst->req; numCycles++; Fault fault = NoFault; // maintain $r0 semantics cpuXC->setIntReg(ZeroReg, 0); #ifdef TARGET_ALPHA cpuXC->setFloatRegDouble(ZeroReg, 0.0); #endif // TARGET_ALPHA // Check if any recent PC changes match up with anything we // expect to happen. This is mostly to check if traps or // PC-based events have occurred in both the checker and CPU. if (changedPC) { DPRINTF(Checker, "Changed PC recently to %#x\n", cpuXC->readPC()); if (willChangePC) { if (newPC == cpuXC->readPC()) { DPRINTF(Checker, "Changed PC matches expected PC\n"); } else { warn("%lli: Changed PC does not match expected PC, " "changed: %#x, expected: %#x", curTick, cpuXC->readPC(), newPC); handleError(); } willChangePC = false; } changedPC = false; } if (changedNextPC) { DPRINTF(Checker, "Changed NextPC recently to %#x\n", cpuXC->readNextPC()); changedNextPC = false; } // Try to fetch the instruction #if FULL_SYSTEM #define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0 #else #define IFETCH_FLAGS(pc) 0 #endif // set up memory request for instruction fetch memReq->cmd = Read; memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t), IFETCH_FLAGS(cpuXC->readPC())); bool succeeded = translateInstReq(memReq); if (!succeeded) { if (inst->getFault() == NoFault) { // In this case the instruction was not a dummy // instruction carrying an ITB fault. In the single // threaded case the ITB should still be able to // translate this instruction; in the SMT case it's // possible that its ITB entry was kicked out. warn("%lli: Instruction PC %#x was not found in the ITB!", curTick, cpuXC->readPC()); handleError(); // go to the next instruction cpuXC->setPC(cpuXC->readNextPC()); cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst)); break; } else { // The instruction is carrying an ITB fault. Handle // the fault and see if our results match the CPU on // the next tick(). fault = inst->getFault(); } } if (fault == NoFault) { cpuXC->mem->read(memReq, machInst); // keep an instruction count numInst++; // decode the instruction machInst = gtoh(machInst); // Checks that the instruction matches what we expected it to be. // Checks both the machine instruction and the PC. validateInst(inst); curStaticInst = StaticInst::decode(makeExtMI(machInst, cpuXC->readPC())); #if FULL_SYSTEM cpuXC->setInst(machInst); #endif // FULL_SYSTEM fault = inst->getFault(); } // Either the instruction was a fault and we should process the fault, // or we should just go ahead execute the instruction. This assumes // that the instruction is properly marked as a fault. if (fault == NoFault) { cpuXC->func_exe_inst++; if (!inst->isUnverifiable()) fault = curStaticInst->execute(this, NULL); // Checks to make sure instrution results are correct. validateExecution(inst); if (curStaticInst->isLoad()) { ++numLoad; } } if (fault != NoFault) { #if FULL_SYSTEM fault->invoke(xcProxy); willChangePC = true; newPC = cpuXC->readPC(); DPRINTF(Checker, "Fault, PC is now %#x\n", newPC); #else // !FULL_SYSTEM fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC()); #endif // FULL_SYSTEM } else { #if THE_ISA != MIPS_ISA // go to the next instruction cpuXC->setPC(cpuXC->readNextPC()); cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst)); #else // go to the next instruction cpuXC->setPC(cpuXC->readNextPC()); cpuXC->setNextPC(cpuXC->readNextNPC()); cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst)); #endif } #if FULL_SYSTEM // @todo: Determine if these should happen only if the // instruction hasn't faulted. In the SimpleCPU case this may // not be true, but in the O3 or Ozone case this may be true. Addr oldpc; int count = 0; do { oldpc = cpuXC->readPC(); system->pcEventQueue.service(xcProxy); count++; } while (oldpc != cpuXC->readPC()); if (count > 1) { willChangePC = true; newPC = cpuXC->readPC(); DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC); } #endif // @todo: Optionally can check all registers. (Or just those // that have been modified). validateState(); // Continue verifying instructions if there's another completed // instruction waiting to be verified. if (instList.empty()) { break; } else if (instList.front()->isCompleted()) { inst = instList.front(); instList.pop_front(); } else { break; } } unverifiedInst = NULL; } template void Checker::switchOut(Sampler *s) { instList.clear(); } template void Checker::takeOverFrom(BaseCPU *oldCPU) { } template void Checker::validateInst(DynInstPtr &inst) { if (inst->readPC() != cpuXC->readPC()) { warn("%lli: PCs do not match! Inst: %#x, checker: %#x", curTick, inst->readPC(), cpuXC->readPC()); if (changedPC) { warn("%lli: Changed PCs recently, may not be an error", curTick); } else { handleError(); } } MachInst mi = static_cast(inst->staticInst->machInst); if (mi != machInst) { warn("%lli: Binary instructions do not match! Inst: %#x, " "checker: %#x", curTick, mi, machInst); handleError(); } } template void Checker::validateExecution(DynInstPtr &inst) { if (inst->numDestRegs()) { // @todo: Support more destination registers. if (inst->isUnverifiable()) { // Unverifiable instructions assume they were executed // properly by the CPU. Grab the result from the // instruction and write it to the register. RegIndex idx = inst->destRegIdx(0); if (idx < TheISA::FP_Base_DepTag) { cpuXC->setIntReg(idx, inst->readIntResult()); } else if (idx < TheISA::Fpcr_DepTag) { cpuXC->setFloatRegInt(idx, inst->readIntResult()); } else { cpuXC->setMiscReg(idx, inst->readIntResult()); } } else if (result.integer != inst->readIntResult()) { warn("%lli: Instruction results do not match! (Results may not " "actually be integers) Inst: %#x, checker: %#x", curTick, inst->readIntResult(), result.integer); handleError(); } } if (inst->readNextPC() != cpuXC->readNextPC()) { warn("%lli: Instruction next PCs do not match! Inst: %#x, " "checker: %#x", curTick, inst->readNextPC(), cpuXC->readNextPC()); handleError(); } // Checking side effect registers can be difficult if they are not // checked simultaneously with the execution of the instruction. // This is because other valid instructions may have modified // these registers in the meantime, and their values are not // stored within the DynInst. while (!miscRegIdxs.empty()) { int misc_reg_idx = miscRegIdxs.front(); miscRegIdxs.pop(); if (inst->xcBase()->readMiscReg(misc_reg_idx) != cpuXC->readMiscReg(misc_reg_idx)) { warn("%lli: Misc reg idx %i (side effect) does not match! " "Inst: %#x, checker: %#x", curTick, misc_reg_idx, inst->xcBase()->readMiscReg(misc_reg_idx), cpuXC->readMiscReg(misc_reg_idx)); handleError(); } } } template void Checker::validateState() { if (updateThisCycle) { warn("%lli: Instruction PC %#x results didn't match up, copying all " "registers from main CPU", unverifiedInst->readPC()); // Heavy-weight copying of all registers cpuXC->copyArchRegs(unverifiedInst->xcBase()); updateThisCycle = false; } } template void Checker::dumpInsts() { int num = 0; InstListIt inst_list_it = --(instList.end()); cprintf("Inst list size: %i\n", instList.size()); while (inst_list_it != instList.end()) { cprintf("Instruction:%i\n", num); cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" "Completed:%i\n", (*inst_list_it)->readPC(), (*inst_list_it)->seqNum, (*inst_list_it)->threadNumber, (*inst_list_it)->isCompleted()); cprintf("\n"); inst_list_it--; ++num; } } template class Checker > >; template class Checker > >;