/* * Copyright (c) 2011 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_CHECKER_CPU_HH__ #define __CPU_CHECKER_CPU_HH__ #include #include #include #include "arch/types.hh" #include "base/statistics.hh" #include "cpu/base.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/pc_event.hh" #include "cpu/simple_thread.hh" #include "cpu/static_inst.hh" #include "debug/Checker.hh" #include "params/CheckerCPU.hh" #include "sim/eventq.hh" // forward declarations namespace TheISA { class TLB; } template class BaseDynInst; class ThreadContext; class Request; /** * CheckerCPU class. Dynamically verifies instructions as they are * completed by making sure that the instruction and its results match * the independent execution of the benchmark inside the checker. The * checker verifies instructions in order, regardless of the order in * which instructions complete. There are certain results that can * not be verified, specifically the result of a store conditional or * the values of uncached accesses. In these cases, and with * instructions marked as "IsUnverifiable", the checker assumes that * the value from the main CPU's execution is correct and simply * copies that value. It provides a CheckerThreadContext (see * checker/thread_context.hh) that provides hooks for updating the * Checker's state through any ThreadContext accesses. This allows the * checker to be able to correctly verify instructions, even with * external accesses to the ThreadContext that change state. */ class CheckerCPU : public BaseCPU { protected: typedef TheISA::MachInst MachInst; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; /** id attached to all issued requests */ MasterID masterId; public: virtual void init(); typedef CheckerCPUParams Params; CheckerCPU(Params *p); virtual ~CheckerCPU(); void setSystem(System *system); void setIcachePort(MasterPort *icache_port); void setDcachePort(MasterPort *dcache_port); MasterPort &getDataPort() { // the checker does not have ports on its own so return the // data port of the actual CPU core assert(dcachePort); return *dcachePort; } MasterPort &getInstPort() { // the checker does not have ports on its own so return the // data port of the actual CPU core assert(icachePort); return *icachePort; } protected: std::vector workload; System *systemPtr; MasterPort *icachePort; MasterPort *dcachePort; ThreadContext *tc; TheISA::TLB *itb; TheISA::TLB *dtb; Addr dbg_vtophys(Addr addr); union Result { uint64_t integer; double dbl; void set(uint64_t i) { integer = i; } void set(double d) { dbl = d; } void get(uint64_t& i) { i = integer; } void get(double& d) { d = dbl; } }; // ISAs like ARM can have multiple destination registers to check, // keep them all in a std::queue std::queue result; // Pointer to the one memory request. RequestPtr memReq; StaticInstPtr curStaticInst; StaticInstPtr curMacroStaticInst; // number of simulated instructions Counter numInst; Counter startNumInst; std::queue miscRegIdxs; public: // Primary thread being run. SimpleThread *thread; TheISA::TLB* getITBPtr() { return itb; } TheISA::TLB* getDTBPtr() { return dtb; } virtual Counter totalInsts() const { return 0; } virtual Counter totalOps() const { return 0; } // number of simulated loads Counter numLoad; Counter startNumLoad; virtual void serialize(std::ostream &os); virtual void unserialize(Checkpoint *cp, const std::string §ion); // These functions are only used in CPU models that split // effective address computation from the actual memory access. void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); } Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); } // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). uint64_t readIntRegOperand(const StaticInst *si, int idx) { return thread->readIntReg(si->srcRegIdx(idx)); } FloatReg readFloatRegOperand(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base; return thread->readFloatReg(reg_idx); } FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base; return thread->readFloatRegBits(reg_idx); } template void setResult(T t) { Result instRes; instRes.set(t); result.push(instRes); } void setIntRegOperand(const StaticInst *si, int idx, uint64_t val) { thread->setIntReg(si->destRegIdx(idx), val); setResult(val); } void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base; thread->setFloatReg(reg_idx, val); setResult(val); } void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base; thread->setFloatRegBits(reg_idx, val); setResult(val); } bool readPredicate() { return thread->readPredicate(); } void setPredicate(bool val) { thread->setPredicate(val); } TheISA::PCState pcState() { return thread->pcState(); } void pcState(const TheISA::PCState &val) { DPRINTF(Checker, "Changing PC to %s, old PC %s.\n", val, thread->pcState()); thread->pcState(val); } Addr instAddr() { return thread->instAddr(); } Addr nextInstAddr() { return thread->nextInstAddr(); } MicroPC microPC() { return thread->microPC(); } ////////////////////////////////////////// MiscReg readMiscRegNoEffect(int misc_reg) { return thread->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg) { return thread->readMiscReg(misc_reg); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val) { miscRegIdxs.push(misc_reg); return thread->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val) { miscRegIdxs.push(misc_reg); return thread->setMiscReg(misc_reg, val); } MiscReg readMiscRegOperand(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base; return thread->readMiscReg(reg_idx); } void setMiscRegOperand( const StaticInst *si, int idx, const MiscReg &val) { int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base; return thread->setMiscReg(reg_idx, val); } #if THE_ISA == MIPS_ISA uint64_t readRegOtherThread(int misc_reg) { panic("MIPS MT not defined for CheckerCPU.\n"); return 0; } void setRegOtherThread(int misc_reg, const TheISA::MiscReg &val) { panic("MIPS MT not defined for CheckerCPU.\n"); } #endif ///////////////////////////////////////// void recordPCChange(const TheISA::PCState &val) { changedPC = true; newPCState = val; } void demapPage(Addr vaddr, uint64_t asn) { this->itb->demapPage(vaddr, asn); this->dtb->demapPage(vaddr, asn); } void demapInstPage(Addr vaddr, uint64_t asn) { this->itb->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { this->dtb->demapPage(vaddr, asn); } Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags); Fault writeMem(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res); void setStCondFailures(unsigned sc_failures) {} ///////////////////////////////////////////////////// Fault hwrei() { return thread->hwrei(); } bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); } void wakeup() { } // Assume that the normal CPU's call to syscall was successful. // The checker's state would have already been updated by the syscall. void syscall(uint64_t callnum) { } void handleError() { if (exitOnError) dumpAndExit(); } bool checkFlags(Request *unverified_req, Addr vAddr, Addr pAddr, int flags); void dumpAndExit(); ThreadContext *tcBase() { return tc; } SimpleThread *threadBase() { return thread; } Result unverifiedResult; Request *unverifiedReq; uint8_t *unverifiedMemData; bool changedPC; bool willChangePC; TheISA::PCState newPCState; bool changedNextPC; bool exitOnError; bool updateOnError; bool warnOnlyOnLoadError; InstSeqNum youngestSN; }; /** * Templated Checker class. This Checker class is templated on the * DynInstPtr of the instruction type that will be verified. Proper * template instantiations of the Checker must be placed at the bottom * of checker/cpu.cc. */ template class Checker : public CheckerCPU { private: typedef typename Impl::DynInstPtr DynInstPtr; public: Checker(Params *p) : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL) { } void switchOut(); void takeOverFrom(BaseCPU *oldCPU); void advancePC(Fault fault); void verify(DynInstPtr &inst); void validateInst(DynInstPtr &inst); void validateExecution(DynInstPtr &inst); void validateState(); void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx); void handlePendingInt(); private: void handleError(DynInstPtr &inst) { if (exitOnError) { dumpAndExit(inst); } else if (updateOnError) { updateThisCycle = true; } } void dumpAndExit(DynInstPtr &inst); bool updateThisCycle; DynInstPtr unverifiedInst; std::list instList; typedef typename std::list::iterator InstListIt; void dumpInsts(); }; #endif // __CPU_CHECKER_CPU_HH__