/* * Copyright (c) 2011, 2016 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_CHECKER_CPU_HH__ #define __CPU_CHECKER_CPU_HH__ #include #include #include #include "arch/types.hh" #include "base/statistics.hh" #include "cpu/base.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/exec_context.hh" #include "cpu/inst_res.hh" #include "cpu/pc_event.hh" #include "cpu/simple_thread.hh" #include "cpu/static_inst.hh" #include "debug/Checker.hh" #include "mem/request.hh" #include "params/CheckerCPU.hh" #include "sim/eventq.hh" class BaseTLB; template class BaseDynInst; class ThreadContext; class Request; /** * CheckerCPU class. Dynamically verifies instructions as they are * completed by making sure that the instruction and its results match * the independent execution of the benchmark inside the checker. The * checker verifies instructions in order, regardless of the order in * which instructions complete. There are certain results that can * not be verified, specifically the result of a store conditional or * the values of uncached accesses. In these cases, and with * instructions marked as "IsUnverifiable", the checker assumes that * the value from the main CPU's execution is correct and simply * copies that value. It provides a CheckerThreadContext (see * checker/thread_context.hh) that provides hooks for updating the * Checker's state through any ThreadContext accesses. This allows the * checker to be able to correctly verify instructions, even with * external accesses to the ThreadContext that change state. */ class CheckerCPU : public BaseCPU, public ExecContext { protected: typedef TheISA::MachInst MachInst; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; using VecRegContainer = TheISA::VecRegContainer; /** id attached to all issued requests */ MasterID masterId; public: void init() override; typedef CheckerCPUParams Params; CheckerCPU(Params *p); virtual ~CheckerCPU(); void setSystem(System *system); void setIcachePort(MasterPort *icache_port); void setDcachePort(MasterPort *dcache_port); MasterPort &getDataPort() override { // the checker does not have ports on its own so return the // data port of the actual CPU core assert(dcachePort); return *dcachePort; } MasterPort &getInstPort() override { // the checker does not have ports on its own so return the // data port of the actual CPU core assert(icachePort); return *icachePort; } protected: std::vector workload; System *systemPtr; MasterPort *icachePort; MasterPort *dcachePort; ThreadContext *tc; BaseTLB *itb; BaseTLB *dtb; Addr dbg_vtophys(Addr addr); // ISAs like ARM can have multiple destination registers to check, // keep them all in a std::queue std::queue result; // Pointer to the one memory request. RequestPtr memReq; StaticInstPtr curStaticInst; StaticInstPtr curMacroStaticInst; // number of simulated instructions Counter numInst; Counter startNumInst; std::queue miscRegIdxs; public: // Primary thread being run. SimpleThread *thread; BaseTLB* getITBPtr() { return itb; } BaseTLB* getDTBPtr() { return dtb; } virtual Counter totalInsts() const override { return 0; } virtual Counter totalOps() const override { return 0; } // number of simulated loads Counter numLoad; Counter startNumLoad; void serialize(CheckpointOut &cp) const override; void unserialize(CheckpointIn &cp) override; // These functions are only used in CPU models that split // effective address computation from the actual memory access. void setEA(Addr EA) override { panic("CheckerCPU::setEA() not implemented\n"); } Addr getEA() const override { panic("CheckerCPU::getEA() not implemented\n"); } // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). IntReg readIntRegOperand(const StaticInst *si, int idx) override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isIntReg()); return thread->readIntReg(reg.index()); } FloatReg readFloatRegOperand(const StaticInst *si, int idx) override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isFloatReg()); return thread->readFloatReg(reg.index()); } FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx) override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isFloatReg()); return thread->readFloatRegBits(reg.index()); } /** * Read source vector register operand. */ const VecRegContainer& readVecRegOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isVecReg()); return thread->readVecReg(reg); } /** * Read destination vector register operand for modification. */ VecRegContainer& getWritableVecRegOperand(const StaticInst *si, int idx) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->getWritableVecReg(reg); } /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ virtual ConstVecLane8 readVec8BitLaneOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->readVec8BitLaneReg(reg); } /** Reads source vector 16bit operand. */ virtual ConstVecLane16 readVec16BitLaneOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->readVec16BitLaneReg(reg); } /** Reads source vector 32bit operand. */ virtual ConstVecLane32 readVec32BitLaneOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->readVec32BitLaneReg(reg); } /** Reads source vector 64bit operand. */ virtual ConstVecLane64 readVec64BitLaneOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->readVec64BitLaneReg(reg); } /** Write a lane of the destination vector operand. */ template void setVecLaneOperandT(const StaticInst *si, int idx, const LD& val) { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); return thread->setVecLane(reg, val); } virtual void setVecLaneOperand(const StaticInst *si, int idx, const LaneData& val) override { setVecLaneOperandT(si, idx, val); } virtual void setVecLaneOperand(const StaticInst *si, int idx, const LaneData& val) override { setVecLaneOperandT(si, idx, val); } virtual void setVecLaneOperand(const StaticInst *si, int idx, const LaneData& val) override { setVecLaneOperandT(si, idx, val); } virtual void setVecLaneOperand(const StaticInst *si, int idx, const LaneData& val) override { setVecLaneOperandT(si, idx, val); } /** @} */ VecElem readVecElemOperand(const StaticInst *si, int idx) const override { const RegId& reg = si->srcRegIdx(idx); return thread->readVecElem(reg); } CCReg readCCRegOperand(const StaticInst *si, int idx) override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isCCReg()); return thread->readCCReg(reg.index()); } template void setScalarResult(T&& t) { result.push(InstResult(std::forward(t), InstResult::ResultType::Scalar)); } template void setVecResult(T&& t) { result.push(InstResult(std::forward(t), InstResult::ResultType::VecReg)); } template void setVecElemResult(T&& t) { result.push(InstResult(std::forward(t), InstResult::ResultType::VecElem)); } void setIntRegOperand(const StaticInst *si, int idx, IntReg val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isIntReg()); thread->setIntReg(reg.index(), val); setScalarResult(val); } void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isFloatReg()); thread->setFloatReg(reg.index(), val); setScalarResult(val); } void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isFloatReg()); thread->setFloatRegBits(reg.index(), val); setScalarResult(val); } void setCCRegOperand(const StaticInst *si, int idx, CCReg val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isCCReg()); thread->setCCReg(reg.index(), val); setScalarResult((uint64_t)val); } void setVecRegOperand(const StaticInst *si, int idx, const VecRegContainer& val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecReg()); thread->setVecReg(reg, val); setVecResult(val); } void setVecElemOperand(const StaticInst *si, int idx, const VecElem val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isVecElem()); thread->setVecElem(reg, val); setVecElemResult(val); } bool readPredicate() override { return thread->readPredicate(); } void setPredicate(bool val) override { thread->setPredicate(val); } TheISA::PCState pcState() const override { return thread->pcState(); } void pcState(const TheISA::PCState &val) override { DPRINTF(Checker, "Changing PC to %s, old PC %s.\n", val, thread->pcState()); thread->pcState(val); } Addr instAddr() { return thread->instAddr(); } Addr nextInstAddr() { return thread->nextInstAddr(); } MicroPC microPC() { return thread->microPC(); } ////////////////////////////////////////// MiscReg readMiscRegNoEffect(int misc_reg) const { return thread->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg) override { return thread->readMiscReg(misc_reg); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val) { DPRINTF(Checker, "Setting misc reg %d with no effect to check later\n", misc_reg); miscRegIdxs.push(misc_reg); return thread->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val) override { DPRINTF(Checker, "Setting misc reg %d with effect to check later\n", misc_reg); miscRegIdxs.push(misc_reg); return thread->setMiscReg(misc_reg, val); } MiscReg readMiscRegOperand(const StaticInst *si, int idx) override { const RegId& reg = si->srcRegIdx(idx); assert(reg.isMiscReg()); return thread->readMiscReg(reg.index()); } void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val) override { const RegId& reg = si->destRegIdx(idx); assert(reg.isMiscReg()); return this->setMiscReg(reg.index(), val); } #if THE_ISA == MIPS_ISA MiscReg readRegOtherThread(const RegId& misc_reg, ThreadID tid) override { panic("MIPS MT not defined for CheckerCPU.\n"); return 0; } void setRegOtherThread(const RegId& misc_reg, MiscReg val, ThreadID tid) override { panic("MIPS MT not defined for CheckerCPU.\n"); } #endif ///////////////////////////////////////// void recordPCChange(const TheISA::PCState &val) { changedPC = true; newPCState = val; } void demapPage(Addr vaddr, uint64_t asn) override { this->itb->demapPage(vaddr, asn); this->dtb->demapPage(vaddr, asn); } // monitor/mwait funtions void armMonitor(Addr address) override { BaseCPU::armMonitor(0, address); } bool mwait(PacketPtr pkt) override { return BaseCPU::mwait(0, pkt); } void mwaitAtomic(ThreadContext *tc) override { return BaseCPU::mwaitAtomic(0, tc, thread->dtb); } AddressMonitor *getAddrMonitor() override { return BaseCPU::getCpuAddrMonitor(0); } void demapInstPage(Addr vaddr, uint64_t asn) { this->itb->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { this->dtb->demapPage(vaddr, asn); } Fault readMem(Addr addr, uint8_t *data, unsigned size, Request::Flags flags) override; Fault writeMem(uint8_t *data, unsigned size, Addr addr, Request::Flags flags, uint64_t *res) override; unsigned int readStCondFailures() const override { return thread->readStCondFailures(); } void setStCondFailures(unsigned int sc_failures) override {} ///////////////////////////////////////////////////// Fault hwrei() override { return thread->hwrei(); } bool simPalCheck(int palFunc) override { return thread->simPalCheck(palFunc); } void wakeup(ThreadID tid) override { } // Assume that the normal CPU's call to syscall was successful. // The checker's state would have already been updated by the syscall. void syscall(int64_t callnum, Fault *fault) override { } void handleError() { if (exitOnError) dumpAndExit(); } bool checkFlags(Request *unverified_req, Addr vAddr, Addr pAddr, int flags); void dumpAndExit(); ThreadContext *tcBase() override { return tc; } SimpleThread *threadBase() { return thread; } InstResult unverifiedResult; Request *unverifiedReq; uint8_t *unverifiedMemData; bool changedPC; bool willChangePC; TheISA::PCState newPCState; bool exitOnError; bool updateOnError; bool warnOnlyOnLoadError; InstSeqNum youngestSN; }; /** * Templated Checker class. This Checker class is templated on the * DynInstPtr of the instruction type that will be verified. Proper * template instantiations of the Checker must be placed at the bottom * of checker/cpu.cc. */ template class Checker : public CheckerCPU { private: typedef typename Impl::DynInstPtr DynInstPtr; public: Checker(Params *p) : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL) { } void switchOut(); void takeOverFrom(BaseCPU *oldCPU); void advancePC(const Fault &fault); void verify(DynInstPtr &inst); void validateInst(DynInstPtr &inst); void validateExecution(DynInstPtr &inst); void validateState(); void copyResult(DynInstPtr &inst, const InstResult& mismatch_val, int start_idx); void handlePendingInt(); private: void handleError(DynInstPtr &inst) { if (exitOnError) { dumpAndExit(inst); } else if (updateOnError) { updateThisCycle = true; } } void dumpAndExit(DynInstPtr &inst); bool updateThisCycle; DynInstPtr unverifiedInst; std::list instList; typedef typename std::list::iterator InstListIt; void dumpInsts(); }; #endif // __CPU_CHECKER_CPU_HH__