/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_BASE_DYN_INST_HH__ #define __CPU_BASE_DYN_INST_HH__ #include #include #include "base/fast_alloc.hh" #include "base/trace.hh" #include "config/full_system.hh" #include "cpu/exetrace.hh" #include "cpu/inst_seq.hh" #include "cpu/o3/comm.hh" #include "cpu/static_inst.hh" #include "encumbered/cpu/full/bpred_update.hh" #include "encumbered/cpu/full/op_class.hh" #include "encumbered/cpu/full/spec_memory.hh" #include "encumbered/cpu/full/spec_state.hh" #include "encumbered/mem/functional/main.hh" /** * @file * Defines a dynamic instruction context. */ // Forward declaration. class StaticInstPtr; template class BaseDynInst : public FastAlloc, public RefCounted { public: // Typedef for the CPU. typedef typename Impl::FullCPU FullCPU; /// Binary machine instruction type. typedef TheISA::MachInst MachInst; /// Logical register index type. typedef TheISA::RegIndex RegIndex; /// Integer register index type. typedef TheISA::IntReg IntReg; enum { MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs }; /** The static inst used by this dyn inst. */ StaticInstPtr staticInst; //////////////////////////////////////////// // // INSTRUCTION EXECUTION // //////////////////////////////////////////// Trace::InstRecord *traceData; template Fault read(Addr addr, T &data, unsigned flags); template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); void prefetch(Addr addr, unsigned flags); void writeHint(Addr addr, int size, unsigned flags); Fault copySrcTranslate(Addr src); Fault copy(Addr dest); /** @todo: Consider making this private. */ public: /** Is this instruction valid. */ bool valid; /** The sequence number of the instruction. */ InstSeqNum seqNum; /** How many source registers are ready. */ unsigned readyRegs; /** Is the instruction completed. */ bool completed; /** Can this instruction issue. */ bool canIssue; /** Has this instruction issued. */ bool issued; /** Has this instruction executed (or made it through execute) yet. */ bool executed; /** Can this instruction commit. */ bool canCommit; /** Is this instruction squashed. */ bool squashed; /** Is this instruction squashed in the instruction queue. */ bool squashedInIQ; /** Is this a recover instruction. */ bool recoverInst; /** Is this a thread blocking instruction. */ bool blockingInst; /* this inst has called thread_block() */ /** Is this a thread syncrhonization instruction. */ bool threadsyncWait; /** The thread this instruction is from. */ short threadNumber; /** data address space ID, for loads & stores. */ short asid; /** Pointer to the FullCPU object. */ FullCPU *cpu; /** Pointer to the exec context. Will not exist in the final version. */ CPUExecContext *cpuXC; /** The kind of fault this instruction has generated. */ Fault fault; /** The effective virtual address (lds & stores only). */ Addr effAddr; /** The effective physical address. */ Addr physEffAddr; /** Effective virtual address for a copy source. */ Addr copySrcEffAddr; /** Effective physical address for a copy source. */ Addr copySrcPhysEffAddr; /** The memory request flags (from translation). */ unsigned memReqFlags; /** The size of the data to be stored. */ int storeSize; /** The data to be stored. */ IntReg storeData; union Result { uint64_t integer; float fp; double dbl; }; /** The result of the instruction; assumes for now that there's only one * destination register. */ Result instResult; /** PC of this instruction. */ Addr PC; /** Next non-speculative PC. It is not filled in at fetch, but rather * once the target of the branch is truly known (either decode or * execute). */ Addr nextPC; /** Predicted next PC. */ Addr predPC; /** Count of total number of dynamic instructions. */ static int instcount; /** Whether or not the source register is ready. Not sure this should be * here vs. the derived class. */ bool _readySrcRegIdx[MaxInstSrcRegs]; public: /** BaseDynInst constructor given a binary instruction. */ BaseDynInst(MachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num, FullCPU *cpu); /** BaseDynInst constructor given a static inst pointer. */ BaseDynInst(StaticInstPtr &_staticInst); /** BaseDynInst destructor. */ ~BaseDynInst(); private: /** Function to initialize variables in the constructors. */ void initVars(); public: void trace_mem(Fault fault, // last fault MemCmd cmd, // last command Addr addr, // virtual address of access void *p, // memory accessed int nbytes); // access size /** Dumps out contents of this BaseDynInst. */ void dump(); /** Dumps out contents of this BaseDynInst into given string. */ void dump(std::string &outstring); /** Returns the fault type. */ Fault getFault() { return fault; } /** Checks whether or not this instruction has had its branch target * calculated yet. For now it is not utilized and is hacked to be * always false. */ bool doneTargCalc() { return false; } /** Returns the next PC. This could be the speculative next PC if it is * called prior to the actual branch target being calculated. */ Addr readNextPC() { return nextPC; } /** Set the predicted target of this current instruction. */ void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; } /** Returns the predicted target of the branch. */ Addr readPredTarg() { return predPC; } /** Returns whether the instruction was predicted taken or not. */ bool predTaken() { return( predPC != (PC + sizeof(MachInst) ) ); } /** Returns whether the instruction mispredicted. */ bool mispredicted() { return (predPC != nextPC); } // // Instruction types. Forward checks to StaticInst object. // bool isNop() const { return staticInst->isNop(); } bool isMemRef() const { return staticInst->isMemRef(); } bool isLoad() const { return staticInst->isLoad(); } bool isStore() const { return staticInst->isStore(); } bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } bool isCopy() const { return staticInst->isCopy(); } bool isInteger() const { return staticInst->isInteger(); } bool isFloating() const { return staticInst->isFloating(); } bool isControl() const { return staticInst->isControl(); } bool isCall() const { return staticInst->isCall(); } bool isReturn() const { return staticInst->isReturn(); } bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } bool isCondCtrl() const { return staticInst->isCondCtrl(); } bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } bool isThreadSync() const { return staticInst->isThreadSync(); } bool isSerializing() const { return staticInst->isSerializing(); } bool isMemBarrier() const { return staticInst->isMemBarrier(); } bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } /** Returns the opclass of this instruction. */ OpClass opClass() const { return staticInst->opClass(); } /** Returns the branch target address. */ Addr branchTarget() const { return staticInst->branchTarget(PC); } /** Number of source registers. */ int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } /** Number of destination registers. */ int8_t numDestRegs() const { return staticInst->numDestRegs(); } // the following are used to track physical register usage // for machines with separate int & FP reg files int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } /** Returns the logical register index of the i'th destination register. */ RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } /** Returns the logical register index of the i'th source register. */ RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } /** Returns the result of an integer instruction. */ uint64_t readIntResult() { return instResult.integer; } /** Returns the result of a floating point instruction. */ float readFloatResult() { return instResult.fp; } /** Returns the result of a floating point (double) instruction. */ double readDoubleResult() { return instResult.dbl; } //Push to .cc file. /** Records that one of the source registers is ready. */ void markSrcRegReady() { ++readyRegs; if(readyRegs == numSrcRegs()) { canIssue = true; } } /** Marks a specific register as ready. * @todo: Move this to .cc file. */ void markSrcRegReady(RegIndex src_idx) { ++readyRegs; _readySrcRegIdx[src_idx] = 1; if(readyRegs == numSrcRegs()) { canIssue = true; } } /** Returns if a source register is ready. */ bool isReadySrcRegIdx(int idx) const { return this->_readySrcRegIdx[idx]; } /** Sets this instruction as completed. */ void setCompleted() { completed = true; } /** Returns whethe or not this instruction is completed. */ bool isCompleted() const { return completed; } /** Sets this instruction as ready to issue. */ void setCanIssue() { canIssue = true; } /** Returns whether or not this instruction is ready to issue. */ bool readyToIssue() const { return canIssue; } /** Sets this instruction as issued from the IQ. */ void setIssued() { issued = true; } /** Returns whether or not this instruction has issued. */ bool isIssued() const { return issued; } /** Sets this instruction as executed. */ void setExecuted() { executed = true; } /** Returns whether or not this instruction has executed. */ bool isExecuted() const { return executed; } /** Sets this instruction as ready to commit. */ void setCanCommit() { canCommit = true; } /** Clears this instruction as being ready to commit. */ void clearCanCommit() { canCommit = false; } /** Returns whether or not this instruction is ready to commit. */ bool readyToCommit() const { return canCommit; } /** Sets this instruction as squashed. */ void setSquashed() { squashed = true; } /** Returns whether or not this instruction is squashed. */ bool isSquashed() const { return squashed; } /** Sets this instruction as squashed in the IQ. */ void setSquashedInIQ() { squashedInIQ = true; } /** Returns whether or not this instruction is squashed in the IQ. */ bool isSquashedInIQ() const { return squashedInIQ; } /** Read the PC of this instruction. */ const Addr readPC() const { return PC; } /** Set the next PC of this instruction (its actual target). */ void setNextPC(uint64_t val) { nextPC = val; } /** Returns the exec context. * @todo: Remove this once the ExecContext is no longer used. */ ExecContext *xcBase() { return cpuXC->getProxy(); } private: /** Instruction effective address. * @todo: Consider if this is necessary or not. */ Addr instEffAddr; /** Whether or not the effective address calculation is completed. * @todo: Consider if this is necessary or not. */ bool eaCalcDone; public: /** Sets the effective address. */ void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } /** Returns the effective address. */ const Addr &getEA() const { return instEffAddr; } /** Returns whether or not the eff. addr. calculation has been completed. */ bool doneEACalc() { return eaCalcDone; } /** Returns whether or not the eff. addr. source registers are ready. */ bool eaSrcsReady(); public: /** Load queue index. */ int16_t lqIdx; /** Store queue index. */ int16_t sqIdx; }; template template inline Fault BaseDynInst::read(Addr addr, T &data, unsigned flags) { MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), sizeof(T), flags); req->asid = asid; fault = cpu->translateDataReadReq(req); // Record key MemReq parameters so we can generate another one // just like it for the timing access without calling translate() // again (which might mess up the TLB). // Do I ever really need this? -KTL 3/05 effAddr = req->vaddr; physEffAddr = req->paddr; memReqFlags = req->flags; /** * @todo * Replace the disjoint functional memory with a unified one and remove * this hack. */ #if !FULL_SYSTEM req->paddr = req->vaddr; #endif if (fault == NoFault) { fault = cpu->read(req, data, lqIdx); } else { // Return a fixed value to keep simulation deterministic even // along misspeculated paths. data = (T)-1; } if (traceData) { traceData->setAddr(addr); traceData->setData(data); } return fault; } template template inline Fault BaseDynInst::write(T data, Addr addr, unsigned flags, uint64_t *res) { if (traceData) { traceData->setAddr(addr); traceData->setData(data); } MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), sizeof(T), flags); req->asid = asid; fault = cpu->translateDataWriteReq(req); // Record key MemReq parameters so we can generate another one // just like it for the timing access without calling translate() // again (which might mess up the TLB). effAddr = req->vaddr; physEffAddr = req->paddr; memReqFlags = req->flags; /** * @todo * Replace the disjoint functional memory with a unified one and remove * this hack. */ #if !FULL_SYSTEM req->paddr = req->vaddr; #endif if (fault == NoFault) { fault = cpu->write(req, data, sqIdx); } if (res) { // always return some result to keep misspeculated paths // (which will ignore faults) deterministic *res = (fault == NoFault) ? req->result : 0; } return fault; } #endif // __CPU_BASE_DYN_INST_HH__