/* * Copyright (c) 2001-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BASE_DYN_INST_HH__ #define __BASE_DYN_INST_HH__ #include #include #include "base/fast_alloc.hh" #include "base/trace.hh" #include "cpu/static_inst.hh" #include "cpu/beta_cpu/comm.hh" #include "cpu/full_cpu/bpred_update.hh" #include "mem/functional_mem/main_memory.hh" #include "cpu/full_cpu/spec_memory.hh" #include "cpu/inst_seq.hh" #include "cpu/full_cpu/op_class.hh" #include "cpu/full_cpu/spec_state.hh" /** * @file * Defines a dynamic instruction context. */ namespace Trace { class InstRecord; }; class BaseInst { }; template class BaseDynInst : public FastAlloc { public: // Typedef for the CPU. typedef typename Impl::FullCPU FullCPU; //Typedef to get the ISA. typedef typename Impl::ISA ISA; /// Binary machine instruction type. typedef typename ISA::MachInst MachInst; /// Memory address type. typedef typename ISA::Addr Addr; /// Logical register index type. typedef typename ISA::RegIndex RegIndex; /// Integer register index type. typedef typename ISA::IntReg IntReg; enum { MaxInstSrcRegs = ISA::MaxInstSrcRegs, //< Max source regs MaxInstDestRegs = ISA::MaxInstDestRegs, //< Max dest regs }; StaticInstPtr staticInst; //////////////////////////////////////////// // // INSTRUCTION EXECUTION // //////////////////////////////////////////// Trace::InstRecord *traceData; // void setCPSeq(InstSeqNum seq); template Fault read(Addr addr, T &data, unsigned flags); template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); IntReg *getIntegerRegs(void); FunctionalMemory *getMemory(void); void prefetch(Addr addr, unsigned flags); void writeHint(Addr addr, int size, unsigned flags); Fault copySrcTranslate(Addr src); Fault copy(Addr dest); public: /** Is this instruction valid. */ bool valid; /** The sequence number of the instruction. */ InstSeqNum seqNum; /** How many source registers are ready. */ unsigned readyRegs; /** Can this instruction issue. */ bool canIssue; /** Has this instruction issued. */ bool issued; /** Has this instruction executed (or made it through execute) yet. */ bool executed; /** Can this instruction commit. */ bool canCommit; /** Is this instruction squashed. */ bool squashed; /** Is this instruction squashed in the instruction queue. */ bool squashedInIQ; /** Is this a recover instruction. */ bool recoverInst; /** Is this a thread blocking instruction. */ bool blockingInst; /* this inst has called thread_block() */ /** Is this a thread syncrhonization instruction. */ bool threadsyncWait; /** If the BTB missed. */ bool btbMissed; /** The thread this instruction is from. */ short threadNumber; /** If instruction is speculative. */ short specMode; /** data address space ID, for loads & stores. */ short asid; /** Pointer to the FullCPU object. */ FullCPU *cpu; /** Pointer to the exec context. Will not exist in the final version. */ ExecContext *xc; /** The kind of fault this instruction has generated. */ Fault fault; /** The effective virtual address (lds & stores only). */ Addr effAddr; /** The effective physical address. */ Addr physEffAddr; /** Effective virtual address for a copy source. */ Addr copySrcEffAddr; /** Effective physical address for a copy source. */ Addr copySrcPhysEffAddr; /** The memory request flags (from translation). */ unsigned memReqFlags; /** The size of the data to be stored. */ int storeSize; /** The data to be stored. */ IntReg storeData; /** Result of this instruction, if an integer. */ uint64_t intResult; /** Result of this instruction, if a float. */ float floatResult; /** Result of this instruction, if a double. */ double doubleResult; /** PC of this instruction. */ Addr PC; /** Next non-speculative PC. It is not filled in at fetch, but rather * once the target of the branch is truly known (either decode or * execute). */ Addr nextPC; /** Predicted next PC. */ Addr predPC; /** Count of total number of dynamic instructions. */ static int instcount; /** Did this instruction do a spec write? */ bool specMemWrite; private: /** Physical register index of the destination registers of this * instruction. */ PhysRegIndex _destRegIdx[MaxInstDestRegs]; /** Physical register index of the source registers of this * instruction. */ PhysRegIndex _srcRegIdx[MaxInstSrcRegs]; /** Whether or not the source register is ready. */ bool _readySrcRegIdx[MaxInstSrcRegs]; /** Physical register index of the previous producers of the * architected destinations. */ PhysRegIndex _prevDestRegIdx[MaxInstDestRegs]; public: /** BaseDynInst constructor given a binary instruction. */ BaseDynInst(MachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num, FullCPU *cpu); /** BaseDynInst constructor given a static inst pointer. */ BaseDynInst(StaticInstPtr &_staticInst); /** BaseDynInst destructor. */ ~BaseDynInst(); #if 0 Fault mem_access(MemCmd cmd, // Read or Write access cmd Addr addr, // virtual address of access void *p, // input/output buffer int nbytes); // access size #endif void trace_mem(Fault fault, // last fault MemCmd cmd, // last command Addr addr, // virtual address of access void *p, // memory accessed int nbytes); // access size /** Dumps out contents of this BaseDynInst. */ void dump(); /** Dumps out contents of this BaseDynInst into given string. */ void dump(std::string &outstring); /** Returns the fault type. */ Fault getFault() { return fault; } /** Checks whether or not this instruction has had its branch target * calculated yet. For now it is not utilized and is hacked to be * always false. */ bool doneTargCalc() { return false; } /** Returns the calculated target of the branch. */ Addr readCalcTarg() { return nextPC; } Addr readNextPC() { return nextPC; } /** Set the predicted target of this current instruction. */ void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; } /** Returns the predicted target of the branch. */ Addr readPredTarg() { return predPC; } /** Returns whether the instruction was predicted taken or not. */ bool predTaken() { // DPRINTF(FullCPU, "PC: %08p\n", PC); // DPRINTF(FullCPU, "predPC: %08p\n", predPC); return( predPC != (PC + sizeof(MachInst) ) ); } /** Returns whether the instruction mispredicted. */ bool mispredicted() { return (predPC != nextPC); } // // Instruction types. Forward checks to StaticInst object. // bool isNop() const { return staticInst->isNop(); } bool isMemRef() const { return staticInst->isMemRef(); } bool isLoad() const { return staticInst->isLoad(); } bool isStore() const { return staticInst->isStore(); } bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } bool isCopy() const { return staticInst->isCopy(); } bool isInteger() const { return staticInst->isInteger(); } bool isFloating() const { return staticInst->isFloating(); } bool isControl() const { return staticInst->isControl(); } bool isCall() const { return staticInst->isCall(); } bool isReturn() const { return staticInst->isReturn(); } bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } bool isCondCtrl() const { return staticInst->isCondCtrl(); } bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } bool isThreadSync() const { return staticInst->isThreadSync(); } bool isSerializing() const { return staticInst->isSerializing(); } bool isMemBarrier() const { return staticInst->isMemBarrier(); } bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } int8_t numDestRegs() const { return staticInst->numDestRegs(); } // the following are used to track physical register usage // for machines with separate int & FP reg files int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } /** Returns the logical register index of the i'th destination register. */ RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } /** Returns the logical register index of the i'th source register. */ RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } /** Returns the physical register index of the i'th destination * register. */ PhysRegIndex renamedDestRegIdx(int idx) const { return _destRegIdx[idx]; } /** Returns the physical register index of the i'th source register. */ PhysRegIndex renamedSrcRegIdx(int idx) const { return _srcRegIdx[idx]; } bool isReadySrcRegIdx(int idx) const { return _readySrcRegIdx[idx]; } /** Returns the physical register index of the previous physical register * that remapped to the same logical register index. */ PhysRegIndex prevDestRegIdx(int idx) const { return _prevDestRegIdx[idx]; } /** Renames a destination register to a physical register. Also records * the previous physical register that the logical register mapped to. */ void renameDestReg(int idx, PhysRegIndex renamed_dest, PhysRegIndex previous_rename) { _destRegIdx[idx] = renamed_dest; _prevDestRegIdx[idx] = previous_rename; } /** Renames a source logical register to the physical register which * has/will produce that logical register's result. * @todo: add in whether or not the source register is ready. */ void renameSrcReg(int idx, PhysRegIndex renamed_src) { _srcRegIdx[idx] = renamed_src; } //Push to .cc file. /** Records that one of the source registers is ready. */ void markSrcRegReady() { ++readyRegs; if(readyRegs == numSrcRegs()) { canIssue = true; } } void markSrcRegReady(RegIndex src_idx) { ++readyRegs; _readySrcRegIdx[src_idx] = 1; if(readyRegs == numSrcRegs()) { canIssue = true; } } /** Sets this instruction as ready to issue. */ void setCanIssue() { canIssue = true; } /** Returns whether or not this instruction is ready to issue. */ bool readyToIssue() const { return canIssue; } /** Sets this instruction as issued from the IQ. */ void setIssued() { issued = true; } /** Returns whether or not this instruction has issued. */ bool isIssued() { return issued; } /** Sets this instruction as executed. */ void setExecuted() { executed = true; } /** Returns whether or not this instruction has executed. */ bool isExecuted() { return executed; } /** Sets this instruction as ready to commit. */ void setCanCommit() { canCommit = true; } /** Returns whether or not this instruction is ready to commit. */ bool readyToCommit() const { return canCommit; } /** Sets this instruction as squashed. */ void setSquashed() { squashed = true; } /** Returns whether or not this instruction is squashed. */ bool isSquashed() const { return squashed; } /** Sets this instruction as squashed in the IQ. */ void setSquashedInIQ() { squashedInIQ = true; } /** Returns whether or not this instruction is squashed in the IQ. */ bool isSquashedInIQ() { return squashedInIQ; } /** Returns the opclass of this instruction. */ OpClass opClass() const { return staticInst->opClass(); } /** Returns whether or not the BTB missed. */ bool btbMiss() const { return btbMissed; } /** Returns the branch target address. */ Addr branchTarget() const { return staticInst->branchTarget(PC); } // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). uint64_t readIntReg(StaticInst *si, int idx) { return cpu->readIntReg(_srcRegIdx[idx]); } float readFloatRegSingle(StaticInst *si, int idx) { return cpu->readFloatRegSingle(_srcRegIdx[idx]); } double readFloatRegDouble(StaticInst *si, int idx) { return cpu->readFloatRegDouble(_srcRegIdx[idx]); } uint64_t readFloatRegInt(StaticInst *si, int idx) { return cpu->readFloatRegInt(_srcRegIdx[idx]); } /** @todo: Make results into arrays so they can handle multiple dest * registers. */ void setIntReg(StaticInst *si, int idx, uint64_t val) { cpu->setIntReg(_destRegIdx[idx], val); intResult = val; } void setFloatRegSingle(StaticInst *si, int idx, float val) { cpu->setFloatRegSingle(_destRegIdx[idx], val); floatResult = val; } void setFloatRegDouble(StaticInst *si, int idx, double val) { cpu->setFloatRegDouble(_destRegIdx[idx], val); doubleResult = val; } void setFloatRegInt(StaticInst *si, int idx, uint64_t val) { cpu->setFloatRegInt(_destRegIdx[idx], val); intResult = val; } /** Read the PC of this instruction. */ Addr readPC() { return PC; } /** Set the next PC of this instruction (its actual target). */ void setNextPC(uint64_t val) { nextPC = val; } // bool misspeculating() { return cpu->misspeculating(); } ExecContext *xcBase() { return xc; } }; template template inline Fault BaseDynInst::read(Addr addr, T &data, unsigned flags) { MemReqPtr req = new MemReq(addr, xc, sizeof(T), flags); req->asid = asid; fault = cpu->translateDataReadReq(req); // Record key MemReq parameters so we can generate another one // just like it for the timing access without calling translate() // again (which might mess up the TLB). effAddr = req->vaddr; physEffAddr = req->paddr; memReqFlags = req->flags; /** * @todo * Replace the disjoint functional memory with a unified one and remove * this hack. */ #ifndef FULL_SYSTEM req->paddr = req->vaddr; #endif if (fault == No_Fault) { fault = cpu->read(req, data); } else { // Return a fixed value to keep simulation deterministic even // along misspeculated paths. data = (T)-1; } if (traceData) { traceData->setAddr(addr); traceData->setData(data); } return fault; } template template inline Fault BaseDynInst::write(T data, Addr addr, unsigned flags, uint64_t *res) { if (traceData) { traceData->setAddr(addr); traceData->setData(data); } storeSize = sizeof(T); storeData = data; if (specMode) specMemWrite = true; MemReqPtr req = new MemReq(addr, xc, sizeof(T), flags); req->asid = asid; fault = cpu->translateDataWriteReq(req); // Record key MemReq parameters so we can generate another one // just like it for the timing access without calling translate() // again (which might mess up the TLB). effAddr = req->vaddr; physEffAddr = req->paddr; memReqFlags = req->flags; /** * @todo * Replace the disjoint functional memory with a unified one and remove * this hack. */ #ifndef FULL_SYSTEM req->paddr = req->vaddr; #endif if (fault == No_Fault) { fault = cpu->write(req, data); } if (res) { // always return some result to keep misspeculated paths // (which will ignore faults) deterministic *res = (fault == No_Fault) ? req->result : 0; } return fault; } #endif // __DYN_INST_HH__