/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert */ #include #include #include #include "arch/tlb.hh" #include "base/cprintf.hh" #include "base/loader/symtab.hh" #include "base/misc.hh" #include "base/output.hh" #include "base/trace.hh" #include "cpu/base.hh" #include "cpu/cpuevent.hh" #include "cpu/thread_context.hh" #include "cpu/profile.hh" #include "params/BaseCPU.hh" #include "sim/sim_exit.hh" #include "sim/process.hh" #include "sim/sim_events.hh" #include "sim/system.hh" // Hack #include "sim/stat_control.hh" using namespace std; vector BaseCPU::cpuList; // This variable reflects the max number of threads in any CPU. Be // careful to only use it once all the CPUs that you care about have // been initialized int maxThreadsPerCPU = 1; CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival) : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0), cpu(_cpu), _repeatEvent(true) { if (_interval) cpu->schedule(this, curTick() + _interval); } void CPUProgressEvent::process() { Counter temp = cpu->totalInstructions(); #ifndef NDEBUG double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1)); DPRINTFN("%s progress event, total committed:%i, progress insts committed: " "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst, ipc); ipc = 0.0; #else cprintf("%lli: %s progress event, total committed:%i, progress insts " "committed: %lli\n", curTick(), cpu->name(), temp, temp - lastNumInst); #endif lastNumInst = temp; if (_repeatEvent) cpu->schedule(this, curTick() + _interval); } const char * CPUProgressEvent::description() const { return "CPU Progress"; } #if FULL_SYSTEM BaseCPU::BaseCPU(Params *p) : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id), interrupts(p->interrupts), numThreads(p->numThreads), system(p->system), phase(p->phase) #else BaseCPU::BaseCPU(Params *p) : MemObject(p), clock(p->clock), _cpuId(p->cpu_id), numThreads(p->numThreads), system(p->system), phase(p->phase) #endif { // currentTick = curTick(); // if Python did not provide a valid ID, do it here if (_cpuId == -1 ) { _cpuId = cpuList.size(); } // add self to global list of CPUs cpuList.push_back(this); DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId); if (numThreads > maxThreadsPerCPU) maxThreadsPerCPU = numThreads; // allocate per-thread instruction-based event queues comInstEventQueue = new EventQueue *[numThreads]; for (ThreadID tid = 0; tid < numThreads; ++tid) comInstEventQueue[tid] = new EventQueue("instruction-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_insts_any_thread != 0) { const char *cause = "a thread reached the max instruction count"; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new SimLoopExitEvent(cause, 0); comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread); } } if (p->max_insts_all_threads != 0) { const char *cause = "all threads reached the max instruction count"; // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = numThreads; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new CountedExitEvent(cause, *counter); comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads); } } // allocate per-thread load-based event queues comLoadEventQueue = new EventQueue *[numThreads]; for (ThreadID tid = 0; tid < numThreads; ++tid) comLoadEventQueue[tid] = new EventQueue("load-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_loads_any_thread != 0) { const char *cause = "a thread reached the max load count"; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new SimLoopExitEvent(cause, 0); comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread); } } if (p->max_loads_all_threads != 0) { const char *cause = "all threads reached the max load count"; // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = numThreads; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new CountedExitEvent(cause, *counter); comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads); } } functionTracingEnabled = false; if (p->function_trace) { functionTraceStream = simout.find(csprintf("ftrace.%s", name())); currentFunctionStart = currentFunctionEnd = 0; functionEntryTick = p->function_trace_start; if (p->function_trace_start == 0) { functionTracingEnabled = true; } else { typedef EventWrapper wrap; Event *event = new wrap(this, true); schedule(event, p->function_trace_start); } } #if FULL_SYSTEM interrupts->setCPU(this); profileEvent = NULL; if (params()->profile) profileEvent = new ProfileEvent(this, params()->profile); #endif tracer = params()->tracer; } void BaseCPU::enableFunctionTrace() { functionTracingEnabled = true; } BaseCPU::~BaseCPU() { } void BaseCPU::init() { if (!params()->defer_registration) registerThreadContexts(); } void BaseCPU::startup() { #if FULL_SYSTEM if (!params()->defer_registration && profileEvent) schedule(profileEvent, curTick()); #endif if (params()->progress_interval) { Tick num_ticks = ticks(params()->progress_interval); Event *event; event = new CPUProgressEvent(this, num_ticks); } } void BaseCPU::regStats() { using namespace Stats; numCycles .name(name() + ".numCycles") .desc("number of cpu cycles simulated") ; int size = threadContexts.size(); if (size > 1) { for (int i = 0; i < size; ++i) { stringstream namestr; ccprintf(namestr, "%s.ctx%d", name(), i); threadContexts[i]->regStats(namestr.str()); } } else if (size == 1) threadContexts[0]->regStats(name()); #if FULL_SYSTEM #endif } Tick BaseCPU::nextCycle() { Tick next_tick = curTick() - phase + clock - 1; next_tick -= (next_tick % clock); next_tick += phase; return next_tick; } Tick BaseCPU::nextCycle(Tick begin_tick) { Tick next_tick = begin_tick; if (next_tick % clock != 0) next_tick = next_tick - (next_tick % clock) + clock; next_tick += phase; assert(next_tick >= curTick()); return next_tick; } void BaseCPU::registerThreadContexts() { ThreadID size = threadContexts.size(); for (ThreadID tid = 0; tid < size; ++tid) { ThreadContext *tc = threadContexts[tid]; /** This is so that contextId and cpuId match where there is a * 1cpu:1context relationship. Otherwise, the order of registration * could affect the assignment and cpu 1 could have context id 3, for * example. We may even want to do something like this for SMT so that * cpu 0 has the lowest thread contexts and cpu N has the highest, but * I'll just do this for now */ if (numThreads == 1) tc->setContextId(system->registerThreadContext(tc, _cpuId)); else tc->setContextId(system->registerThreadContext(tc)); #if !FULL_SYSTEM tc->getProcessPtr()->assignThreadContext(tc->contextId()); #endif } } int BaseCPU::findContext(ThreadContext *tc) { ThreadID size = threadContexts.size(); for (ThreadID tid = 0; tid < size; ++tid) { if (tc == threadContexts[tid]) return tid; } return 0; } void BaseCPU::switchOut() { // panic("This CPU doesn't support sampling!"); #if FULL_SYSTEM if (profileEvent && profileEvent->scheduled()) deschedule(profileEvent); #endif } void BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc) { assert(threadContexts.size() == oldCPU->threadContexts.size()); _cpuId = oldCPU->cpuId(); ThreadID size = threadContexts.size(); for (ThreadID i = 0; i < size; ++i) { ThreadContext *newTC = threadContexts[i]; ThreadContext *oldTC = oldCPU->threadContexts[i]; newTC->takeOverFrom(oldTC); CpuEvent::replaceThreadContext(oldTC, newTC); assert(newTC->contextId() == oldTC->contextId()); assert(newTC->threadId() == oldTC->threadId()); system->replaceThreadContext(newTC, newTC->contextId()); /* This code no longer works since the zero register (e.g., * r31 on Alpha) doesn't necessarily contain zero at this * point. if (DTRACE(Context)) ThreadContext::compare(oldTC, newTC); */ Port *old_itb_port, *old_dtb_port, *new_itb_port, *new_dtb_port; old_itb_port = oldTC->getITBPtr()->getPort(); old_dtb_port = oldTC->getDTBPtr()->getPort(); new_itb_port = newTC->getITBPtr()->getPort(); new_dtb_port = newTC->getDTBPtr()->getPort(); // Move over any table walker ports if they exist if (new_itb_port && !new_itb_port->isConnected()) { assert(old_itb_port); Port *peer = old_itb_port->getPeer();; new_itb_port->setPeer(peer); peer->setPeer(new_itb_port); } if (new_dtb_port && !new_dtb_port->isConnected()) { assert(old_dtb_port); Port *peer = old_dtb_port->getPeer();; new_dtb_port->setPeer(peer); peer->setPeer(new_dtb_port); } } #if FULL_SYSTEM interrupts = oldCPU->interrupts; interrupts->setCPU(this); for (ThreadID i = 0; i < size; ++i) threadContexts[i]->profileClear(); if (profileEvent) schedule(profileEvent, curTick()); #endif // Connect new CPU to old CPU's memory only if new CPU isn't // connected to anything. Also connect old CPU's memory to new // CPU. if (!ic->isConnected()) { Port *peer = oldCPU->getPort("icache_port")->getPeer(); ic->setPeer(peer); peer->setPeer(ic); } if (!dc->isConnected()) { Port *peer = oldCPU->getPort("dcache_port")->getPeer(); dc->setPeer(peer); peer->setPeer(dc); } } #if FULL_SYSTEM BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval) : cpu(_cpu), interval(_interval) { } void BaseCPU::ProfileEvent::process() { ThreadID size = cpu->threadContexts.size(); for (ThreadID i = 0; i < size; ++i) { ThreadContext *tc = cpu->threadContexts[i]; tc->profileSample(); } cpu->schedule(this, curTick() + interval); } void BaseCPU::serialize(std::ostream &os) { SERIALIZE_SCALAR(instCnt); interrupts->serialize(os); } void BaseCPU::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_SCALAR(instCnt); interrupts->unserialize(cp, section); } #endif // FULL_SYSTEM void BaseCPU::traceFunctionsInternal(Addr pc) { if (!debugSymbolTable) return; // if pc enters different function, print new function symbol and // update saved range. Otherwise do nothing. if (pc < currentFunctionStart || pc >= currentFunctionEnd) { string sym_str; bool found = debugSymbolTable->findNearestSymbol(pc, sym_str, currentFunctionStart, currentFunctionEnd); if (!found) { // no symbol found: use addr as label sym_str = csprintf("0x%x", pc); currentFunctionStart = pc; currentFunctionEnd = pc + 1; } ccprintf(*functionTraceStream, " (%d)\n%d: %s", curTick() - functionEntryTick, curTick(), sym_str); functionEntryTick = curTick(); } }