// -*- mode:c++ -*- // Copyright (c) 2007 The Hewlett-Packard Development Company // All rights reserved. // // Redistribution and use of this software in source and binary forms, // with or without modification, are permitted provided that the // following conditions are met: // // The software must be used only for Non-Commercial Use which means any // use which is NOT directed to receiving any direct monetary // compensation for, or commercial advantage from such use. Illustrative // examples of non-commercial use are academic research, personal study, // teaching, education and corporate research & development. // Illustrative examples of commercial use are distributing products for // commercial advantage and providing services using the software for // commercial advantage. // // If you wish to use this software or functionality therein that may be // covered by patents for commercial use, please contact: // Director of Intellectual Property Licensing // Office of Strategy and Technology // Hewlett-Packard Company // 1501 Page Mill Road // Palo Alto, California 94304 // // Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. Redistributions // in binary form must reproduce the above copyright notice, this list of // conditions and the following disclaimer in the documentation and/or // other materials provided with the distribution. Neither the name of // the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. No right of // sublicense is granted herewith. Derivatives of the software and // output created using the software may be prepared, but only for // Non-Commercial Uses. Derivatives of the software may be shared with // others provided: (i) the others agree to abide by the list of // conditions herein which includes the Non-Commercial Use restrictions; // and (ii) such Derivatives of the software include the above copyright // notice to acknowledge the contribution from this software where // applicable, this list of conditions and the disclaimer below. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black //////////////////////////////////////////////////////////////////// // // Code to "specialize" a microcode sequence to use a particular // variety of operands // let {{ # This code builds up a decode block which decodes based on switchval. # vals is a dict which matches case values with what should be decoded to. # builder is called on the exploded contents of "vals" values to generate # whatever code should be used. def doSplitDecode(Name, builder, switchVal, vals, default = None): blocks = OutputBlocks() blocks.decode_block = 'switch(%s) {\n' % switchVal for (val, todo) in vals.items(): new_blocks = builder(Name, *todo) new_blocks.decode_block = \ '\tcase %s: %s\n' % (val, new_blocks.decode_block) blocks.append(new_blocks) if default: new_blocks = builder(Name, *default) new_blocks.decode_block = \ '\tdefault: %s\n' % new_blocks.decode_block blocks.append(new_blocks) blocks.decode_block += '}\n' return blocks }}; let {{ class OpType(object): parser = re.compile(r"(?P[A-Z][A-Z]*)(?P[a-z][a-z]*)|(r(?P[A-Z0-9]*)(?P[a-z]*))") def __init__(self, opTypeString): match = OpType.parser.search(opTypeString) if match == None: raise Exception, "Problem parsing operand type %s" % opTypeString self.reg = match.group("reg") self.tag = match.group("tag") self.size = match.group("size") self.rsize = match.group("rsize") ModRMRegIndex = "(MODRM_REG | (REX_R << 3))" ModRMRMIndex = "(MODRM_RM | (REX_B << 3))" # This function specializes the given piece of code to use a particular # set of argument types described by "opTypes". def specializeInst(Name, opTypes, env): print "Specializing %s with opTypes %s" % (Name, opTypes) while len(opTypes): # Parse the operand type string we're working with opType = OpType(opTypes[0]) if opType.reg: #Figure out what to do with fixed register operands #This is the index to use, so we should stick it some place. if opType.reg in ("A", "B", "C", "D"): env.addReg("INTREG_R%sX" % opType.reg) else: env.addReg("INTREG_R%s" % opType.reg) if opType.size: if opType.rsize in ("l", "h", "b"): print "byte" elif opType.rsize == "x": print "word" else: print "Didn't recognize fixed register size %s!" % opType.rsize elif opType.tag == None or opType.size == None: raise Exception, "Problem parsing operand tag: %s" % opType.tag elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"): # Use the "reg" field of the ModRM byte to select the register env.addReg(ModRMRegIndex) elif opType.tag in ("E", "Q", "W"): # This might refer to memory or to a register. We need to # divide it up farther. regTypes = copy.copy(opTypes) regTypes.pop(0) regEnv = copy.copy(env) regEnv.addReg(ModRMRMIndex) # This needs to refer to memory, but we'll fill in the details # later. It needs to take into account unaligned memory # addresses. memTypes = copy.copy(opTypes) memTypes.pop(0) memEnv = copy.copy(env) print "%0" return doSplitDecode(Name, specializeInst, "MODRM_MOD", {"3" : (regTypes, regEnv)}, (memTypes, memEnv)) elif opType.tag in ("I", "J"): # Immediates print "IMMEDIATE" elif opType.tag == "M": # This needs to refer to memory, but we'll fill in the details # later. It needs to take into account unaligned memory # addresses. print "%0" elif opType.tag in ("PR", "R", "VR"): # There should probably be a check here to verify that mod # is equal to 11b env.addReg(ModRMRMIndex) else: raise Exception, "Unrecognized tag %s." % opType.tag opTypes.pop(0) # Generate code to return a macroop of the given name which will # operate in the "emulation environment" env return genMacroop(Name, env) }};