// Copyright (c) 2007 The Hewlett-Packard Development Company // All rights reserved. // // Redistribution and use of this software in source and binary forms, // with or without modification, are permitted provided that the // following conditions are met: // // The software must be used only for Non-Commercial Use which means any // use which is NOT directed to receiving any direct monetary // compensation for, or commercial advantage from such use. Illustrative // examples of non-commercial use are academic research, personal study, // teaching, education and corporate research & development. // Illustrative examples of commercial use are distributing products for // commercial advantage and providing services using the software for // commercial advantage. // // If you wish to use this software or functionality therein that may be // covered by patents for commercial use, please contact: // Director of Intellectual Property Licensing // Office of Strategy and Technology // Hewlett-Packard Company // 1501 Page Mill Road // Palo Alto, California 94304 // // Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. Redistributions // in binary form must reproduce the above copyright notice, this list of // conditions and the following disclaimer in the documentation and/or // other materials provided with the distribution. Neither the name of // the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. No right of // sublicense is granted herewith. Derivatives of the software and // output created using the software may be prepared, but only for // Non-Commercial Uses. Derivatives of the software may be shared with // others provided: (i) the others agree to abide by the list of // conditions herein which includes the Non-Commercial Use restrictions; // and (ii) such Derivatives of the software include the above copyright // notice to acknowledge the contribution from this software where // applicable, this list of conditions and the disclaimer below. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black ////////////////////////////////////////////////////////////////////////// // // RegOp Microop templates // ////////////////////////////////////////////////////////////////////////// def template MicroRegOpExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; DPRINTF(X86, "The data size is %d\n", dataSize); %(op_decl)s; %(op_rd)s; if(%(cond_check)s) { %(code)s; %(flag_code)s; } else { %(else_code)s; } //Write the resulting state to the execution context if(fault == NoFault) { %(op_wb)s; } return fault; } }}; def template MicroRegOpImmExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; %(op_decl)s; %(op_rd)s; if(%(cond_check)s) { %(code)s; %(flag_code)s; } else { %(else_code)s; } //Write the resulting state to the execution context if(fault == NoFault) { %(op_wb)s; } return fault; } }}; def template MicroRegOpDeclare {{ class %(class_name)s : public %(base_class)s { protected: void buildMe(); public: %(class_name)s(ExtMachInst _machInst, const char * instMnem, bool isMicro, bool isDelayed, bool isFirst, bool isLast, RegIndex _src1, RegIndex _src2, RegIndex _dest, uint8_t _dataSize, uint16_t _ext); %(class_name)s(ExtMachInst _machInst, const char * instMnem, RegIndex _src1, RegIndex _src2, RegIndex _dest, uint8_t _dataSize, uint16_t _ext); %(BasicExecDeclare)s }; }}; def template MicroRegOpImmDeclare {{ class %(class_name)s : public %(base_class)s { protected: void buildMe(); public: %(class_name)s(ExtMachInst _machInst, const char * instMnem, bool isMicro, bool isDelayed, bool isFirst, bool isLast, RegIndex _src1, uint16_t _imm8, RegIndex _dest, uint8_t _dataSize, uint16_t _ext); %(class_name)s(ExtMachInst _machInst, const char * instMnem, RegIndex _src1, uint16_t _imm8, RegIndex _dest, uint8_t _dataSize, uint16_t _ext); %(BasicExecDeclare)s }; }}; def template MicroRegOpConstructor {{ inline void %(class_name)s::buildMe() { %(constructor)s; } inline %(class_name)s::%(class_name)s( ExtMachInst machInst, const char * instMnem, RegIndex _src1, RegIndex _src2, RegIndex _dest, uint8_t _dataSize, uint16_t _ext) : %(base_class)s(machInst, "%(mnemonic)s", instMnem, false, false, false, false, _src1, _src2, _dest, _dataSize, _ext, %(op_class)s) { buildMe(); } inline %(class_name)s::%(class_name)s( ExtMachInst machInst, const char * instMnem, bool isMicro, bool isDelayed, bool isFirst, bool isLast, RegIndex _src1, RegIndex _src2, RegIndex _dest, uint8_t _dataSize, uint16_t _ext) : %(base_class)s(machInst, "%(mnemonic)s", instMnem, isMicro, isDelayed, isFirst, isLast, _src1, _src2, _dest, _dataSize, _ext, %(op_class)s) { buildMe(); } }}; def template MicroRegOpImmConstructor {{ inline void %(class_name)s::buildMe() { %(constructor)s; } inline %(class_name)s::%(class_name)s( ExtMachInst machInst, const char * instMnem, RegIndex _src1, uint16_t _imm8, RegIndex _dest, uint8_t _dataSize, uint16_t _ext) : %(base_class)s(machInst, "%(mnemonic)s", instMnem, false, false, false, false, _src1, _imm8, _dest, _dataSize, _ext, %(op_class)s) { buildMe(); } inline %(class_name)s::%(class_name)s( ExtMachInst machInst, const char * instMnem, bool isMicro, bool isDelayed, bool isFirst, bool isLast, RegIndex _src1, uint16_t _imm8, RegIndex _dest, uint8_t _dataSize, uint16_t _ext) : %(base_class)s(machInst, "%(mnemonic)s", instMnem, isMicro, isDelayed, isFirst, isLast, _src1, _imm8, _dest, _dataSize, _ext, %(op_class)s) { buildMe(); } }}; let {{ class X86MicroMeta(type): def __new__(mcls, name, bases, dict): abstract = False if "abstract" in dict: abstract = dict['abstract'] del dict['abstract'] cls = type.__new__(mcls, name, bases, dict) if not abstract: allClasses[name] = cls return cls class XXX86Microop(object): __metaclass__ = X86MicroMeta abstract = True class RegOp(X86Microop): abstract = True def __init__(self, dest, src1, src2, flags, dataSize): self.dest = dest self.src1 = src1 self.src2 = src2 self.flags = flags self.dataSize = dataSize if flags is None: self.ext = 0 else: if not isinstance(flags, (list, tuple)): raise Exception, "flags must be a list or tuple of flags" self.ext = " | ".join(flags) self.className += "Flags" def getAllocator(self, *microFlags): allocator = '''new %(class_name)s(machInst, mnemonic %(flags)s, %(src1)s, %(src2)s, %(dest)s, %(dataSize)s, %(ext)s)''' % { "class_name" : self.className, "flags" : self.microFlagsText(microFlags), "src1" : self.src1, "src2" : self.src2, "dest" : self.dest, "dataSize" : self.dataSize, "ext" : self.ext} return allocator class RegOpImm(X86Microop): abstract = True def __init__(self, dest, src1, imm8, flags, dataSize): self.dest = dest self.src1 = src1 self.imm8 = imm8 self.flags = flags self.dataSize = dataSize if flags is None: self.ext = 0 else: if not isinstance(flags, (list, tuple)): raise Exception, "flags must be a list or tuple of flags" self.ext = " | ".join(flags) self.className += "Flags" def getAllocator(self, *microFlags): allocator = '''new %(class_name)s(machInst, mnemonic %(flags)s, %(src1)s, %(imm8)s, %(dest)s, %(dataSize)s, %(ext)s)''' % { "class_name" : self.className, "flags" : self.microFlagsText(microFlags), "src1" : self.src1, "imm8" : self.imm8, "dest" : self.dest, "dataSize" : self.dataSize, "ext" : self.ext} return allocator }}; let {{ # Make these empty strings so that concatenating onto # them will always work. header_output = "" decoder_output = "" exec_output = "" # A function which builds the C++ classes that implement the microops def setUpMicroRegOp(name, Name, base, code, flagCode = "", condCheck = "true", elseCode = ";", imm=False): global header_output global decoder_output global exec_output global microopClasses iop = InstObjParams(name, Name, base, {"code" : code, "flag_code" : flagCode, "cond_check" : condCheck, "else_code" : elseCode}) if imm: header_output += MicroRegOpImmDeclare.subst(iop) decoder_output += MicroRegOpImmConstructor.subst(iop) exec_output += MicroRegOpImmExecute.subst(iop) else: header_output += MicroRegOpDeclare.subst(iop) decoder_output += MicroRegOpConstructor.subst(iop) exec_output += MicroRegOpExecute.subst(iop) checkCCFlagBits = "checkCondition(ccFlagBits)" genCCFlagBits = \ "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);" genCCFlagBitsSub = \ "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);" genCCFlagBitsLogic = ''' //Don't have genFlags handle the OF or CF bits uint64_t mask = CFBit | OFBit; ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2); //If a logic microop wants to set these, it wants to set them to 0. ccFlagBits &= ~(CFBit & ext); ccFlagBits &= ~(OFBit & ext); ''' regPick = ''' IntReg psrc1 = pick(SrcReg1, 0, dataSize); IntReg psrc2 = pick(SrcReg2, 1, dataSize); ''' immPick = ''' IntReg psrc1 = pick(SrcReg1, 0, dataSize); ''' # This creates a python representations of a microop which are a cross # product of reg/immediate and flag/no flag versions. def defineMicroRegOp(mnemonic, code, flagCode=genCCFlagBits, \ cc=False, doImm=True, elseCode=";"): Name = mnemonic name = mnemonic.lower() # Find op2 in each of the instruction definitions. Create two versions # of the code, one with an integer operand, and one with an immediate # operand. matcher = re.compile("op2(?P\\.\\w+)?") regCode = regPick + matcher.sub("psrc2", code) immCode = immPick + matcher.sub("imm8", code) if not cc: condCode = "true" else: flagCode = "" condCode = checkCCFlagBits regFlagCode = matcher.sub("psrc2", flagCode) immFlagCode = matcher.sub("imm8", flagCode) class RegOpChild(RegOp): mnemonic = name className = Name def __init__(self, dest, src1, src2, \ flags=None, dataSize="env.dataSize"): super(RegOpChild, self).__init__(dest, src1, src2, \ flags, dataSize) microopClasses[name] = RegOpChild setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode); setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp", regCode, flagCode=regFlagCode, condCheck=condCode, elseCode=elseCode); if doImm: class RegOpChildImm(RegOpImm): mnemonic = name + 'i' className = Name + 'Imm' def __init__(self, dest, src1, src2, \ flags=None, dataSize="env.dataSize"): super(RegOpChildImm, self).__init__(dest, src1, src2, \ flags, dataSize) microopClasses[name + 'i'] = RegOpChildImm setUpMicroRegOp(name + "i", Name + "Imm", "X86ISA::RegOpImm", \ immCode, imm=True); setUpMicroRegOp(name + "i", Name + "ImmFlags", "X86ISA::RegOpImm", immCode, flagCode=immFlagCode, condCheck=condCode, elseCode=elseCode, imm=True); # This has it's own function because Wr ops have implicit destinations def defineMicroRegOpWr(mnemonic, code, elseCode=";"): Name = mnemonic name = mnemonic.lower() # Find op2 in each of the instruction definitions. Create two versions # of the code, one with an integer operand, and one with an immediate # operand. matcher = re.compile("op2(?P\\.\\w+)?") regCode = regPick + matcher.sub("psrc2", code) immCode = immPick + matcher.sub("imm8", code) class RegOpChild(RegOp): mnemonic = name className = Name def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"): super(RegOpChild, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize) microopClasses[name] = RegOpChild setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode); setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp", regCode, condCheck = checkCCFlagBits, elseCode = elseCode); class RegOpChildImm(RegOpImm): mnemonic = name + 'i' className = Name + 'Imm' def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"): super(RegOpChildImm, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize) microopClasses[name + 'i'] = RegOpChildImm setUpMicroRegOp(name + 'i', Name + "Imm", "X86ISA::RegOpImm", \ immCode, imm=True); setUpMicroRegOp(name + 'i', Name + "ImmFlags", "X86ISA::RegOpImm", \ immCode, condCheck = checkCCFlagBits, elseCode = elseCode, \ imm=True); # This has it's own function because Rd ops don't always have two parameters def defineMicroRegOpRd(mnemonic, code): Name = mnemonic name = mnemonic.lower() class RegOpChild(RegOp): className = Name mnemonic = name def __init__(self, dest, src1 = "NUM_INTREGS", dataSize="env.dataSize"): super(RegOpChild, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize) microopClasses[name] = RegOpChild setUpMicroRegOp(name, Name, "X86ISA::RegOp", code); def defineMicroRegOpImm(mnemonic, code, flagCode=""): Name = mnemonic name = mnemonic.lower() code = immPick + code class RegOpChild(RegOpImm): className = Name mnemonic = name def __init__(self, dest, src1, src2, \ flags=None, dataSize="env.dataSize"): super(RegOpChild, self).__init__(dest, \ src1, src2, flags, dataSize) microopClasses[name] = RegOpChild setUpMicroRegOp(name, Name, "X86ISA::RegOpImm", code, imm=True); setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOpImm", \ code, flagCode=flagCode, imm=True); def defineMicroRegOpRdImm(mnemonic, code, flagCode=""): Name = mnemonic name = mnemonic.lower() code = immPick + code class RegOpChildRdImm(RegOpImm): className = Name mnemonic = name def __init__(self, dest, imm, flags=None, \ dataSize="env.dataSize"): super(RegOpChildRdImm, self).__init__(dest, \ "NUM_INTREGS", imm, flags, dataSize) microopClasses[name] = RegOpChildRdImm setUpMicroRegOp(name, Name, "X86ISA::RegOpImm", code, imm=True); setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOpImm", \ code, flagCode=flagCode, imm=True); defineMicroRegOp('Add', 'DestReg = merge(DestReg, psrc1 + op2, dataSize)') defineMicroRegOp('Or', 'DestReg = merge(DestReg, psrc1 | op2, dataSize);', flagCode = genCCFlagBitsLogic) defineMicroRegOp('Adc', ''' CCFlagBits flags = ccFlagBits; DestReg = merge(DestReg, psrc1 + op2 + flags.CF, dataSize); ''') defineMicroRegOp('Sbb', ''' CCFlagBits flags = ccFlagBits; DestReg = merge(DestReg, psrc1 - op2 - flags.CF, dataSize); ''', flagCode = genCCFlagBitsSub) defineMicroRegOp('And', \ 'DestReg = merge(DestReg, psrc1 & op2, dataSize)', \ flagCode = genCCFlagBitsLogic) defineMicroRegOp('Sub', \ 'DestReg = merge(DestReg, psrc1 - op2, dataSize)', \ flagCode = genCCFlagBitsSub) defineMicroRegOp('Xor', \ 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)', \ flagCode = genCCFlagBitsLogic) defineMicroRegOp('Mul1s', ''' int signPos = (dataSize * 8) / 2 - 1; IntReg srcVal1 = psrc1 | (-bits(psrc1, signPos) << signPos); IntReg srcVal2 = op2 | (-bits(psrc1, signPos) << signPos); DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize) ''') defineMicroRegOp('Mul1u', ''' int halfSize = (dataSize * 8) / 2; IntReg srcVal1 = psrc1 & mask(halfSize); IntReg srcVal2 = op2 & mask(halfSize); DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize) ''') defineMicroRegOp('Mulel', \ 'DestReg = merge(DestReg, psrc1 * op2, dataSize)') defineMicroRegOp('Muleh', ''' int halfSize = (dataSize * 8) / 2; uint64_t psrc1_h = psrc1 >> halfSize; uint64_t psrc1_l = psrc1 & mask(halfSize); uint64_t psrc2_h = op2 >> halfSize; uint64_t psrc2_l = op2 & mask(halfSize); uint64_t result = ((psrc1_l * psrc2_h) >> halfSize) + ((psrc1_h * psrc2_l) >> halfSize) + psrc1_h * psrc2_h; DestReg = merge(DestReg, result, dataSize); ''') defineMicroRegOp('Div1', ''' int halfSize = (dataSize * 8) / 2; IntReg quotient = (psrc1 / op2) & mask(halfSize); IntReg remainder = (psrc1 % op2) & mask(halfSize); IntReg result = quotient | (remainder << halfSize); DestReg = merge(DestReg, result, dataSize); ''') defineMicroRegOp('Divq', ''' DestReg = merge(DestReg, psrc1 / op2, dataSize); ''') defineMicroRegOp('Divr', ''' DestReg = merge(DestReg, psrc1 % op2, dataSize); ''') # # HACK HACK HACK HACK - Put psrc1 in here but make it inert to shut up gcc. # defineMicroRegOp('Mov', 'DestReg = merge(SrcReg1, psrc1 * 0 + op2, dataSize)', elseCode='DestReg=DestReg;', cc=True) defineMicroRegOp('Movfp', 'FpDestReg = FpSrcReg2 + psrc1 * 0 + psrc2 * 0', elseCode='FpDestReg=FpDestReg;', cc=True, doImm=False) # Shift instructions defineMicroRegOp('Sll', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize); ''') defineMicroRegOp('Srl', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); // Because what happens to the bits shift -in- on a right shift // is not defined in the C/C++ standard, we have to mask them out // to be sure they're zero. uint64_t logicalMask = mask(dataSize * 8 - shiftAmt); DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize); ''') defineMicroRegOp('Sra', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); // Because what happens to the bits shift -in- on a right shift // is not defined in the C/C++ standard, we have to sign extend // them manually to be sure. uint64_t arithMask = -bits(op2, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt); DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize); ''') defineMicroRegOp('Ror', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); if(shiftAmt) { uint64_t top = psrc1 << (dataSize * 8 - shiftAmt); uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt); DestReg = merge(DestReg, top | bottom, dataSize); } else DestReg = DestReg; ''') defineMicroRegOp('Rcr', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); if(shiftAmt) { CCFlagBits flags = ccFlagBits; uint64_t top = flags.CF << (dataSize * 8 - shiftAmt); if(shiftAmt > 1) top |= psrc1 << (dataSize * 8 - shiftAmt - 1); uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt); DestReg = merge(DestReg, top | bottom, dataSize); } else DestReg = DestReg; ''') defineMicroRegOp('Rol', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); if(shiftAmt) { uint64_t top = psrc1 << shiftAmt; uint64_t bottom = bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt); DestReg = merge(DestReg, top | bottom, dataSize); } else DestReg = DestReg; ''') defineMicroRegOp('Rcl', ''' uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); if(shiftAmt) { CCFlagBits flags = ccFlagBits; uint64_t top = psrc1 << shiftAmt; uint64_t bottom = flags.CF << (shiftAmt - 1); if(shiftAmt > 1) bottom |= bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt + 1); DestReg = merge(DestReg, top | bottom, dataSize); } else DestReg = DestReg; ''') defineMicroRegOpWr('Wrip', 'RIP = psrc1 + op2', elseCode="RIP = RIP;") defineMicroRegOpWr('Br', 'nuIP = psrc1 + op2;', elseCode='nuIP = nuIP;') defineMicroRegOpWr('Wruflags', 'ccFlagBits = psrc1 ^ op2') defineMicroRegOpRd('Rdip', 'DestReg = RIP') defineMicroRegOpRd('Ruflags', 'DestReg = ccFlagBits') defineMicroRegOpRdImm('Ruflag', ''' int flag = bits(ccFlagBits, imm8 + 0*psrc1); DestReg = merge(DestReg, flag, dataSize); ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) : (ccFlagBits & ~EZFBit); ''') defineMicroRegOpImm('Sext', ''' IntReg val = psrc1; int sign_bit = bits(val, imm8-1, imm8-1); uint64_t maskVal = mask(imm8); val = sign_bit ? (val | ~maskVal) : (val & maskVal); DestReg = merge(DestReg, val, dataSize); ''') defineMicroRegOpImm('Zext', 'DestReg = bits(psrc1, imm8-1, 0);') }};