// -*- mode:c++ -*- // Copyright (c) 2007 The Hewlett-Packard Development Company // All rights reserved. // // Redistribution and use of this software in source and binary forms, // with or without modification, are permitted provided that the // following conditions are met: // // The software must be used only for Non-Commercial Use which means any // use which is NOT directed to receiving any direct monetary // compensation for, or commercial advantage from such use. Illustrative // examples of non-commercial use are academic research, personal study, // teaching, education and corporate research & development. // Illustrative examples of commercial use are distributing products for // commercial advantage and providing services using the software for // commercial advantage. // // If you wish to use this software or functionality therein that may be // covered by patents for commercial use, please contact: // Director of Intellectual Property Licensing // Office of Strategy and Technology // Hewlett-Packard Company // 1501 Page Mill Road // Palo Alto, California 94304 // // Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. Redistributions // in binary form must reproduce the above copyright notice, this list of // conditions and the following disclaimer in the documentation and/or // other materials provided with the distribution. Neither the name of // the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. No right of // sublicense is granted herewith. Derivatives of the software and // output created using the software may be prepared, but only for // Non-Commercial Uses. Derivatives of the software may be shared with // others provided: (i) the others agree to abide by the list of // conditions herein which includes the Non-Commercial Use restrictions; // and (ii) such Derivatives of the software include the above copyright // notice to acknowledge the contribution from this software where // applicable, this list of conditions and the disclaimer below. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black //////////////////////////////////////////////////////////////////// // // Code to "specialize" a microcode sequence to use a particular // variety of operands // let {{ # This code builds up a decode block which decodes based on switchval. # vals is a dict which matches case values with what should be decoded to. # builder is called on the exploded contents of "vals" values to generate # whatever code should be used. def doSplitDecode(name, Name, builder, switchVal, vals, default = None): header_output = '' decoder_output = '' decode_block = 'switch(%s) {\n' % switchVal exec_output = '' for (val, todo) in vals.items(): (new_header_output, new_decoder_output, new_decode_block, new_exec_output) = builder(name, Name, *todo) header_output += new_header_output decoder_output += new_decoder_output decode_block += '\tcase %s: %s\n' % (val, new_decode_block) exec_output += new_exec_output if default: (new_header_output, new_decoder_output, new_decode_block, new_exec_output) = builder(name, Name, *default) header_output += new_header_output decoder_output += new_decoder_output decode_block += '\tdefault: %s\n' % new_decode_block exec_output += new_exec_output decode_block += '}\n' return (header_output, decoder_output, decode_block, exec_output) }}; let {{ class OpType(object): parser = re.compile(r"(?P[A-Z][A-Z]*)(?P[a-z][a-z]*)|(r(?P[A-Za-z0-9][A-Za-z0-9]*))") def __init__(self, opTypeString): match = OpType.parser.search(opTypeString) if match == None: raise Exception, "Problem parsing operand type %s" % opTypeString self.reg = match.group("reg") self.tag = match.group("tag") self.size = match.group("size") }}; let {{ # This function specializes the given piece of code to use a particular # set of argument types described by "opTypes". These are "implemented" # in reverse order. def specializeInst(name, Name, code, opTypes): opNum = len(opTypes) - 1 while len(opTypes): # print "Building a composite op with tags", opTypes # print "And code", code opNum = len(opTypes) - 1 # A regular expression to find the operand placeholders we're # interested in. opRe = re.compile("\\^(?P%d)(?=[^0-9]|$)" % opNum) # Parse the operand type strign we're working with opType = OpType(opTypes[opNum]) if opType.reg: #Figure out what to do with fixed register operands if opType.reg in ("Ax", "Bx", "Cx", "Dx"): code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code) elif opType.reg == "Al": # We need a way to specify register width code = opRe.sub("%{INTREG_RAX}", code) else: print "Didn't know how to encode fixed register %s!" % opType.reg elif opType.tag == None or opType.size == None: raise Exception, "Problem parsing operand tag: %s" % opType.tag elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"): # Use the "reg" field of the ModRM byte to select the register code = opRe.sub("%{(uint8_t)MODRM_REG}", code) elif opType.tag in ("E", "Q", "W"): # This might refer to memory or to a register. We need to # divide it up farther. regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code) regTypes = copy.copy(opTypes) regTypes.pop(-1) # This needs to refer to memory, but we'll fill in the details # later. It needs to take into account unaligned memory # addresses. memCode = opRe.sub("%0", code) memTypes = copy.copy(opTypes) memTypes.pop(-1) return doSplitDecode(name, Name, specializeInst, "MODRM_MOD", {"3" : (regCode, regTypes)}, (memCode, memTypes)) elif opType.tag in ("I", "J"): # Immediates are already in the instruction, so don't leave in # those parameters code = opRe.sub("${IMMEDIATE}", code) elif opType.tag == "M": # This needs to refer to memory, but we'll fill in the details # later. It needs to take into account unaligned memory # addresses. code = opRe.sub("%0", code) elif opType.tag in ("PR", "R", "VR"): # There should probably be a check here to verify that mod # is equal to 11b code = opRe.sub("%{(uint8_t)MODRM_RM}", code) else: raise Exception, "Unrecognized tag %s." % opType.tag opTypes.pop(-1) # At this point, we've built up "code" to have all the necessary extra # instructions needed to implement whatever types of operands were # specified. Now we'll assemble it it into a StaticInst. return assembleMicro(name, Name, code) }}; //////////////////////////////////////////////////////////////////// // // The microcode assembler // let {{ # These are used when setting up microops so that they can specialize their # base class template properly. RegOpType = "RegisterOperand" ImmOpType = "ImmediateOperand" }}; let {{ class MicroOpStatement(object): def __init__(self): self.className = '' self.label = '' self.args = [] # This converts a list of python bools into # a comma seperated list of C++ bools. def microFlagsText(self, vals): text = "" for val in vals: if val: text += ", true" else: text += ", false" return text def getAllocator(self, *microFlags): args = '' signature = "<" emptySig = True for arg in self.args: if not emptySig: signature += ", " emptySig = False if arg.has_key("operandImm"): args += ", %s" % arg["operandImm"] signature += ImmOpType elif arg.has_key("operandReg"): args += ", %s" % arg["operandReg"] signature += RegOpType elif arg.has_key("operandLabel"): raise Exception, "Found a label while creating allocator string." else: raise Exception, "Unrecognized operand type." signature += ">" return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args) }}; let{{ def assembleMicro(name, Name, code): # This function takes in a block of microcode assembly and returns # a python list of objects which describe it. # Keep this around in case we need it later orig_code = code # A list of the statements we've found thus far statements = [] # Regular expressions to pull each piece of the statement out at a # time. Each expression expects the thing it's looking for to be at # the beginning of the line, so the previous component is stripped # before continuing. labelRe = re.compile(r'^[ \t]*(?P