# Copyright (c) 2007 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the # following conditions are met: # # The software must be used only for Non-Commercial Use which means any # use which is NOT directed to receiving any direct monetary # compensation for, or commercial advantage from such use. Illustrative # examples of non-commercial use are academic research, personal study, # teaching, education and corporate research & development. # Illustrative examples of commercial use are distributing products for # commercial advantage and providing services using the software for # commercial advantage. # # If you wish to use this software or functionality therein that may be # covered by patents for commercial use, please contact: # Director of Intellectual Property Licensing # Office of Strategy and Technology # Hewlett-Packard Company # 1501 Page Mill Road # Palo Alto, California 94304 # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. Redistributions # in binary form must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. Neither the name of # the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. No right of # sublicense is granted herewith. Derivatives of the software and # output created using the software may be prepared, but only for # Non-Commercial Uses. Derivatives of the software may be shared with # others provided: (i) the others agree to abide by the list of # conditions herein which includes the Non-Commercial Use restrictions; # and (ii) such Derivatives of the software include the above copyright # notice to acknowledge the contribution from this software where # applicable, this list of conditions and the disclaimer below. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Gabe Black microcode = ''' # # Regular moves # def macroop MOV_R_MI { limm t1, imm ld reg, seg, [1, t0, t1] }; def macroop MOV_MI_R { limm t1, imm st reg, seg, [1, t0, t1] }; def macroop MOV_R_R { mov reg, reg, regm }; def macroop MOV_M_R { st reg, seg, sib, disp }; def macroop MOV_P_R { rdip t7 st reg, seg, riprel, disp }; def macroop MOV_R_M { ld reg, seg, sib, disp }; def macroop MOV_R_P { rdip t7 ld reg, seg, riprel, disp }; def macroop MOV_R_I { limm reg, imm }; def macroop MOV_M_I { limm t1, imm st t1, seg, sib, disp }; def macroop MOV_P_I { rdip t7 limm t1, imm st t1, seg, riprel, disp }; # # Sign extending moves # def macroop MOVSXD_R_R { sexti reg, regm, 31 }; def macroop MOVSXD_R_M { ld t1, seg, sib, disp, dataSize=4 sexti reg, t1, 31 }; def macroop MOVSXD_R_P { rdip t7 ld t1, seg, riprel, disp, dataSize=4 sexti reg, t1, 31 }; def macroop MOVSX_B_R_R { sexti reg, regm, 7 }; def macroop MOVSX_B_R_M { ld reg, seg, sib, disp, dataSize=1 sexti reg, reg, 7 }; def macroop MOVSX_B_R_P { rdip t7 ld reg, seg, riprel, disp, dataSize=1 sexti reg, reg, 7 }; def macroop MOVSX_W_R_R { sexti reg, regm, 15 }; def macroop MOVSX_W_R_M { ld reg, seg, sib, disp, dataSize=2 sexti reg, reg, 15 }; def macroop MOVSX_W_R_P { rdip t7 ld reg, seg, riprel, disp, dataSize=2 sexti reg, reg, 15 }; # # Zero extending moves # def macroop MOVZX_B_R_R { zexti reg, regm, 7 }; def macroop MOVZX_B_R_M { ld t1, seg, sib, disp, dataSize=1 zexti reg, t1, 7 }; def macroop MOVZX_B_R_P { rdip t7 ld t1, seg, riprel, disp, dataSize=1 zexti reg, t1, 7 }; def macroop MOVZX_W_R_R { zexti reg, regm, 15 }; def macroop MOVZX_W_R_M { ld t1, seg, sib, disp, dataSize=2 zexti reg, t1, 15 }; def macroop MOVZX_W_R_P { rdip t7 ld t1, seg, riprel, disp, dataSize=2 zexti reg, t1, 15 }; def macroop MOV_C_R { wrcr reg, regm }; def macroop MOV_R_C { rdcr reg, regm }; def macroop MOV_R_S { rdsel reg, regm }; def macroop MOV_M_S { rdsel t1, reg st t1, seg, sib, disp, dataSize=2 }; def macroop MOV_P_S { rdip t7 rdsel t1, reg st t1, seg, riprel, disp, dataSize=2 }; def macroop MOV_REAL_S_R { zext t2, regm, 15 slli t3, t2, 2, dataSize=8 wrsel reg, regm wrbase reg, t3 }; def macroop MOV_REAL_S_M { ld t1, seg, sib, disp, dataSize=2 zext t2, t1, 15 slli t3, t2, 2, dataSize=8 wrsel reg, t1 wrbase reg, t3 }; def macroop MOV_REAL_S_P { rdip t7 ld t1, seg, riprel, disp, dataSize=2 zext t2, t1, 15 slli t3, t2, 2, dataSize=8 wrsel reg, t1 wrbase reg, t3 }; def macroop MOV_S_R { chks t1, regm, flags=(EZF,), dataSize=8 bri t0, label("end"), flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, regm end: wrsel reg, regm }; def macroop MOV_S_M { ld t1, seg, sib, disp, dataSize=2 chks t2, t1, flags=(EZF,), dataSize=8 bri t0, label("end"), flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, t1 end: wrsel reg, t1 }; def macroop MOV_S_P { rdip t7 ld t1, seg, riprel, disp, dataSize=2 chks t2, t1, flags=(EZF,), dataSize=8 bri t0, label("end"), flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, t1 end: wrsel reg, t1 }; def macroop MOVSS_S_R { chks t1, regm, flags=(EZF,), dataSize=8 # This actually needs to use the selector as the error code, but it would # be hard to get that information into the instruction at the moment. fault "new GeneralProtection(0)", flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, regm wrsel reg, regm }; def macroop MOVSS_S_M { ld t1, seg, sib, disp, dataSize=2 chks t2, t1, flags=(EZF,), dataSize=8 # This actually needs to use the selector as the error code, but it would # be hard to get that information into the instruction at the moment. fault "new GeneralProtection(0)", flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, t1 wrsel reg, t1 }; def macroop MOVSS_S_P { rdip t7 ld t1, seg, riprel, disp, dataSize=2 chks t2, t1, flags=(EZF,), dataSize=8 # This actually needs to use the selector as the error code, but it would # be hard to get that information into the instruction at the moment. fault "new GeneralProtection(0)", flags=(CEZF,) ld t2, flatseg, [1, t0, t1], addressSize=8, dataSize=8 wrdl reg, t2, t1 wrsel reg, t1 }; ''' #let {{ # class MOVD(Inst): # "GenFault ${new UnimpInstFault}" # class MOVNTI(Inst): # "GenFault ${new UnimpInstFault}" #}};