// Copyright (c) 2006 The Regents of The University of Michigan // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Ali Saidi // Gabe Black // Steve Reinhardt //////////////////////////////////////////////////////////////////// // // Mem utility templates and functions // output header {{ /** * Base class for memory operations. */ class Mem : public SparcStaticInst { protected: // Constructor Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Class for memory operations which use an immediate offset. */ class MemImm : public Mem { protected: // Constructor MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) : Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13)) {} std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; const int32_t imm; }; }}; output decoder {{ std::string Mem::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream response; bool load = flags[IsLoad]; bool store = flags[IsStore]; printMnemonic(response, mnemonic); if(store) { printReg(response, _srcRegIdx[0]); ccprintf(response, ", "); } ccprintf(response, "["); if(_srcRegIdx[!store ? 0 : 1] != 0) { printSrcReg(response, !store ? 0 : 1); ccprintf(response, " + "); } printSrcReg(response, !store ? 1 : 2); ccprintf(response, "]"); if(load) { ccprintf(response, ", "); printReg(response, _destRegIdx[0]); } return response.str(); } std::string MemImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream response; bool load = flags[IsLoad]; bool save = flags[IsStore]; printMnemonic(response, mnemonic); if(save) { printReg(response, _srcRegIdx[0]); ccprintf(response, ", "); } ccprintf(response, "["); if(_srcRegIdx[!save ? 0 : 1] != 0) { printReg(response, _srcRegIdx[!save ? 0 : 1]); ccprintf(response, " + "); } if(imm >= 0) ccprintf(response, "0x%x]", imm); else ccprintf(response, "-0x%x]", -imm); if(load) { ccprintf(response, ", "); printReg(response, _destRegIdx[0]); } return response.str(); } }}; //This template provides the execute functions for a load def template LoadExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; Addr EA; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if(fault == NoFault) { fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s); } if(fault == NoFault) { %(code)s; } if(fault == NoFault) { //Write the resulting state to the execution context %(op_wb)s; } return fault; } }}; def template LoadInitiateAcc {{ Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; Addr EA; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if(fault == NoFault) { fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s); } return fault; } }}; def template LoadCompleteAcc {{ Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; %(op_decl)s; %(op_rd)s; Mem = pkt->get(); %(code)s; if(fault == NoFault) { %(op_wb)s; } return fault; } }}; //This template provides the execute functions for a store def template StoreExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; //This is to support the conditional store in cas instructions. //It should be optomized out in all the others bool storeCond = true; Addr EA; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if(fault == NoFault) { %(code)s; } if(storeCond && fault == NoFault) { fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, %(asi_val)s, 0); } if(fault == NoFault) { //Write the resulting state to the execution context %(op_wb)s; } return fault; } }}; def template StoreInitiateAcc {{ Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; bool storeCond = true; Addr EA; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if(fault == NoFault) { %(code)s; } if(storeCond && fault == NoFault) { fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, %(asi_val)s, 0); } if(fault == NoFault) { //Write the resulting state to the execution context %(op_wb)s; } return fault; } }}; def template StoreCompleteAcc {{ Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc, Trace::InstRecord * traceData) const { return NoFault; } }}; //This delcares the initiateAcc function in memory operations def template InitiateAccDeclare {{ Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const; }}; //This declares the completeAcc function in memory operations def template CompleteAccDeclare {{ Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const; }}; //Here are some code snippets which check for various fault conditions let {{ LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc] StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc] # The LSB can be zero, since it's really the MSB in doubles and quads # and we're dealing with doubles BlockAlignmentFaultCheck = ''' if(RD & 0xe) fault = new IllegalInstruction; else if(EA & 0x3f) fault = new MemAddressNotAligned; ''' # XXX Need to take care of pstate.hpriv as well. The lower ASIs # are split into ones that are available in priv and hpriv, and # those that are only available in hpriv AlternateASIPrivFaultCheck = ''' if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) || !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI)) fault = new PrivilegedAction; else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2)) fault = new PrivilegedAction; ''' }}; //A simple function to generate the name of the macro op of a certain //instruction at a certain micropc let {{ def makeMicroName(name, microPc): return name + "::" + name + "_" + str(microPc) }}; //This function properly generates the execute functions for one of the //templates above. This is needed because in one case, ea computation, //fault checks and the actual code all occur in the same function, //and in the other they're distributed across two. Also note that for //execute functions, the name of the base class doesn't matter. let {{ def doSplitExecute(execute, name, Name, asi, opt_flags, microParam): microParam["asi_val"] = asi; iop = InstObjParams(name, Name, '', microParam, opt_flags) (execf, initf, compf) = execute return execf.subst(iop) + initf.subst(iop) + compf.subst(iop) def doDualSplitExecute(code, eaRegCode, eaImmCode, execute, faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags): executeCode = '' for (eaCode, name, Name) in ( (eaRegCode, nameReg, NameReg), (eaImmCode, nameImm, NameImm)): microParams = {"code": code, "ea_code": eaCode, "fault_check": faultCode} executeCode += doSplitExecute(execute, name, Name, asi, opt_flags, microParams) return executeCode }};