// Copyright (c) 2006-2007 The Regents of The University of Michigan // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Ali Saidi // Gabe Black // Steve Reinhardt //////////////////////////////////////////////////////////////////// // // Mem utility templates and functions // output header {{ /** * Base class for memory operations. */ class Mem : public SparcStaticInst { protected: // Constructor Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Class for memory operations which use an immediate offset. */ class MemImm : public Mem { protected: // Constructor MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) : Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13)) {} std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; const int32_t imm; }; }}; output decoder {{ std::string Mem::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream response; bool load = flags[IsLoad]; bool store = flags[IsStore]; printMnemonic(response, mnemonic); if (store) { printReg(response, _srcRegIdx[0]); ccprintf(response, ", "); } ccprintf(response, "["); if (_srcRegIdx[!store ? 0 : 1].index() != 0) { printSrcReg(response, !store ? 0 : 1); ccprintf(response, " + "); } printSrcReg(response, !store ? 1 : 2); ccprintf(response, "]"); if (load) { ccprintf(response, ", "); printReg(response, _destRegIdx[0]); } return response.str(); } std::string MemImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream response; bool load = flags[IsLoad]; bool save = flags[IsStore]; printMnemonic(response, mnemonic); if (save) { printReg(response, _srcRegIdx[0]); ccprintf(response, ", "); } ccprintf(response, "["); if (_srcRegIdx[!save ? 0 : 1].index() != 0) { printReg(response, _srcRegIdx[!save ? 0 : 1]); ccprintf(response, " + "); } if (imm >= 0) ccprintf(response, "0x%x]", imm); else ccprintf(response, "-0x%x]", -imm); if (load) { ccprintf(response, ", "); printReg(response, _destRegIdx[0]); } return response.str(); } }}; // This template provides the execute functions for a load def template LoadExecute {{ Fault %(class_name)s::execute(ExecContext *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; Addr EA; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if (fault == NoFault) { %(EA_trunc)s fault = readMemAtomic(xc, traceData, EA, Mem, %(asi_val)s); } if (fault == NoFault) { %(code)s; } if (fault == NoFault) { // Write the resulting state to the execution context %(op_wb)s; } return fault; } }}; def template LoadInitiateAcc {{ Fault %(class_name)s::initiateAcc(ExecContext * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; Addr EA; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if (fault == NoFault) { %(EA_trunc)s fault = initiateMemRead(xc, traceData, EA, Mem, %(asi_val)s); } return fault; } }}; def template LoadCompleteAcc {{ Fault %(class_name)s::completeAcc(PacketPtr pkt, ExecContext * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; %(op_decl)s; %(op_rd)s; getMem(pkt, Mem, traceData); %(code)s; if (fault == NoFault) { %(op_wb)s; } return fault; } }}; // This template provides the execute functions for a store def template StoreExecute {{ Fault %(class_name)s::execute(ExecContext *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; // This is to support the conditional store in cas instructions. // It should be optomized out in all the others bool storeCond = true; Addr EA; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if (fault == NoFault) { %(code)s; } if (storeCond && fault == NoFault) { %(EA_trunc)s fault = writeMemAtomic(xc, traceData, Mem, EA, %(asi_val)s, 0); } if (fault == NoFault) { // Write the resulting state to the execution context %(op_wb)s; } return fault; } }}; def template StoreInitiateAcc {{ Fault %(class_name)s::initiateAcc(ExecContext * xc, Trace::InstRecord * traceData) const { Fault fault = NoFault; bool storeCond = true; Addr EA; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(ea_code)s; DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA); %(fault_check)s; if (fault == NoFault) { %(code)s; } if (storeCond && fault == NoFault) { %(EA_trunc)s fault = writeMemTiming(xc, traceData, Mem, EA, %(asi_val)s, 0); } return fault; } }}; def template StoreCompleteAcc {{ Fault %(class_name)s::completeAcc(PacketPtr, ExecContext * xc, Trace::InstRecord * traceData) const { return NoFault; } }}; def template EACompExecute {{ Fault %(class_name)s::eaComp(ExecContext *xc, Trace::InstRecord *traceData) const { Addr EA; Fault fault = NoFault; %(op_decl)s; %(op_rd)s; %(ea_code)s; %(fault_check)s; // NOTE: Trace Data is written using execute or completeAcc templates if (fault == NoFault) { %(EA_trunc)s xc->setEA(EA); } return fault; } }}; // This declares the completeAcc function in memory operations def template CompleteAccDeclare {{ Fault completeAcc(PacketPtr, ExecContext *, Trace::InstRecord *) const; }}; // Here are some code snippets which check for various fault conditions let {{ LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc] StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc] # The LSB can be zero, since it's really the MSB in doubles and quads # and we're dealing with doubles BlockAlignmentFaultCheck = ''' if (RD & 0xe) fault = std::make_shared(); else if (EA & 0x3f) fault = std::make_shared(); ''' TwinAlignmentFaultCheck = ''' if (RD & 0x1) fault = std::make_shared(); else if (EA & 0xf) fault = std::make_shared(); ''' # XXX Need to take care of pstate.hpriv as well. The lower ASIs # are split into ones that are available in priv and hpriv, and # those that are only available in hpriv AlternateASIPrivFaultCheck = ''' if ((!Pstate.priv && !Hpstate.hpriv && !asiIsUnPriv((ASI)EXT_ASI)) || (!Hpstate.hpriv && asiIsHPriv((ASI)EXT_ASI))) fault = std::make_shared(); else if (asiIsAsIfUser((ASI)EXT_ASI) && !Pstate.priv) fault = std::make_shared(); ''' TruncateEA = ''' if (!FullSystem) { EA = Pstate.am ? EA<31:0> : EA; } ''' }}; // A simple function to generate the name of the macro op of a certain // instruction at a certain micropc let {{ def makeMicroName(name, microPc): return name + "::" + name + "_" + str(microPc) }}; // This function properly generates the execute functions for one of the // templates above. This is needed because in one case, ea computation, // fault checks and the actual code all occur in the same function, // and in the other they're distributed across two. Also note that for // execute functions, the name of the base class doesn't matter. let {{ def doSplitExecute(execute, name, Name, asi, opt_flags, microParam): microParam["asi_val"] = asi; iop = InstObjParams(name, Name, '', microParam, opt_flags) (execf, initf, compf) = execute return execf.subst(iop) + initf.subst(iop) + compf.subst(iop) def doDualSplitExecute(code, postacc_code, eaRegCode, eaImmCode, execute, faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags): executeCode = '' for (eaCode, name, Name) in ( (eaRegCode, nameReg, NameReg), (eaImmCode, nameImm, NameImm)): microParams = {"code": code, "postacc_code" : postacc_code, "ea_code": eaCode, "fault_check": faultCode, "EA_trunc" : TruncateEA} executeCode += doSplitExecute(execute, name, Name, asi, opt_flags, microParams) return executeCode }};