// -*- mode:c++ -*- let {{ def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags, postacc_code = '', base_class = 'Memory', decode_template = BasicDecode, exec_template_base = ''): # Make sure flags are in lists (convert to lists if not). mem_flags = makeList(mem_flags) inst_flags = makeList(inst_flags) # add hook to get effective addresses into execution trace output. ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n' # generate code block objects ea_cblk = CodeBlock(ea_code) memacc_cblk = CodeBlock(memacc_code) postacc_cblk = CodeBlock(postacc_code) # Some CPU models execute the memory operation as an atomic unit, # while others want to separate them into an effective address # computation and a memory access operation. As a result, we need # to generate three StaticInst objects. Note that the latter two # are nested inside the larger "atomic" one. # generate InstObjParams for EAComp object ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags) # generate InstObjParams for MemAcc object memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags) # in the split execution model, the MemAcc portion is responsible # for the post-access code. memacc_iop.postacc_code = postacc_cblk.code # generate InstObjParams for InitiateAcc, CompleteAcc object # The code used depends on the template being used if (exec_template_base == 'Load'): initiateacc_cblk = CodeBlock(ea_code + memacc_code) completeacc_cblk = CodeBlock(memacc_code + postacc_code) elif (exec_template_base == 'Store'): initiateacc_cblk = CodeBlock(ea_code + memacc_code) completeacc_cblk = CodeBlock(postacc_code) else: initiateacc_cblk = '' completeacc_cblk = '' initiateacc_iop = InstObjParams(name, Name, base_class, initiateacc_cblk, inst_flags) completeacc_iop = InstObjParams(name, Name, base_class, completeacc_cblk, inst_flags) if (exec_template_base == 'Load'): initiateacc_iop.ea_code = ea_cblk.code initiateacc_iop.memacc_code = memacc_cblk.code completeacc_iop.memacc_code = memacc_cblk.code completeacc_iop.postacc_code = postacc_cblk.code elif (exec_template_base == 'Store'): initiateacc_iop.ea_code = ea_cblk.code initiateacc_iop.memacc_code = memacc_cblk.code completeacc_iop.postacc_code = postacc_cblk.code # generate InstObjParams for unified execution cblk = CodeBlock(ea_code + memacc_code + postacc_code) iop = InstObjParams(name, Name, base_class, cblk, inst_flags) iop.ea_constructor = ea_cblk.constructor iop.ea_code = ea_cblk.code iop.memacc_constructor = memacc_cblk.constructor iop.memacc_code = memacc_cblk.code iop.postacc_code = postacc_cblk.code if mem_flags: s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';' iop.constructor += s memacc_iop.constructor += s # select templates memAccExecTemplate = eval(exec_template_base + 'MemAccExecute') fullExecTemplate = eval(exec_template_base + 'Execute') initiateAccTemplate = eval(exec_template_base + 'InitiateAcc') completeAccTemplate = eval(exec_template_base + 'CompleteAcc') # (header_output, decoder_output, decode_block, exec_output) return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop), decode_template.subst(iop), EACompExecute.subst(ea_iop) + memAccExecTemplate.subst(memacc_iop) + fullExecTemplate.subst(iop) + initiateAccTemplate.subst(initiateacc_iop) + completeAccTemplate.subst(completeacc_iop)) }}; output exec {{ using namespace MipsISA; /// CLEAR ALL CPU INST/EXE HAZARDS inline void clear_exe_inst_hazards() { //CODE HERE } /// Check "FP enabled" machine status bit. Called when executing any FP /// instruction in full-system mode. /// @retval Full-system mode: NoFault if FP is enabled, FenFault /// if not. Non-full-system mode: always returns NoFault. #if FULL_SYSTEM inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { Fault fault = NoFault; // dummy... this ipr access should not fault if (!Mips34k::ICSR_FPE(xc->readIpr(MipsISA::IPR_ICSR, fault))) { fault = FloatEnableFault; } return fault; } #else inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { return NoFault; } #endif }};