// -*- mode:c++ -*- // Copyright N) 2007 MIPS Technologies, Inc. All Rights Reserved // This software is part of the M5 simulator. // THIS IS A LEGAL AGREEMENT. BY DOWNLOADING, USING, COPYING, CREATING // DERIVATIVE WORKS, AND/OR DISTRIBUTING THIS SOFTWARE YOU ARE AGREEING // TO THESE TERMS AND CONDITIONS. // Permission is granted to use, copy, create derivative works and // distribute this software and such derivative works for any purpose, // so long as (1) the copyright notice above, this grant of permission, // and the disclaimer below appear in all copies and derivative works // made, (2) the copyright notice above is augmented as appropriate to // reflect the addition of any new copyrightable work in a derivative // work (e.g., Copyright N) Copyright Owner), and (3) // the name of MIPS Technologies, Inc. ($(B!H(BMIPS$(B!I(B) is not used in any // advertising or publicity pertaining to the use or distribution of // this software without specific, written prior authorization. // THIS SOFTWARE IS PROVIDED $(B!H(BAS IS.$(B!I(B MIPS MAKES NO WARRANTIES AND // DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, STATUTORY, IMPLIED OR // OTHERWISE, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND // NON-INFRINGEMENT OF THIRD PARTY RIGHTS, REGARDING THIS SOFTWARE. // IN NO EVENT SHALL MIPS BE LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, // INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR PUNITIVE DAMAGES OF // ANY KIND OR NATURE, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT, // THIS SOFTWARE AND/OR THE USE OF THIS SOFTWARE, WHETHER SUCH LIABILITY // IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE OR // STRICT LIABILITY), OR OTHERWISE, EVEN IF MIPS HAS BEEN WARNED OF THE // POSSIBILITY OF ANY SUCH LOSS OR DAMAGE IN ADVANCE. //Authors: Korey L. Sewell //////////////////////////////////////////////////////////////////// // // Floating Point operate instructions // output header {{ /** * Base class for FP operations. */ class FPOp : public MipsStaticInst { protected: /// Constructor FPOp(const char *mnem, MachInst _machInst, OpClass __opClass) : MipsStaticInst(mnem, _machInst, __opClass) { } //std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; //needs function to check for fpEnable or not }; class FPCompareOp : public FPOp { protected: FPCompareOp(const char *mnem, MachInst _machInst, OpClass __opClass) : FPOp(mnem, _machInst, __opClass) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string FPCompareOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); ccprintf(ss,"%d",CC); if(_numSrcRegs > 0) { ss << ", "; printReg(ss, _srcRegIdx[0]); } if(_numSrcRegs > 1) { ss << ", "; printReg(ss, _srcRegIdx[1]); } return ss.str(); } }}; output exec {{ inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { //@TODO: Implement correct CP0 checks to see if the CP1 // unit is enable or not if (!isCoprocessorEnabled(xc, 1)) return new CoprocessorUnusableFault(1); return NoFault; } //If any operand is Nan return the appropriate QNaN template bool fpNanOperands(FPOp *inst, %(CPU_exec_context)s *xc, const T &src_type, Trace::InstRecord *traceData) { uint64_t mips_nan = 0; T src_op = 0; int size = sizeof(src_op) * 8; for (int i = 0; i < inst->numSrcRegs(); i++) { uint64_t src_bits = xc->readFloatRegOperandBits(inst, 0, size); if (isNan(&src_bits, size) ) { if (isSnan(&src_bits, size)) { switch (size) { case 32: mips_nan = MIPS32_QNAN; break; case 64: mips_nan = MIPS64_QNAN; break; default: panic("Unsupported Floating Point Size (%d)", size); } } else { mips_nan = src_bits; } xc->setFloatRegOperandBits(inst, 0, mips_nan, size); if (traceData) { traceData->setData(mips_nan); } return true; } } return false; } template bool fpInvalidOp(FPOp *inst, %(CPU_exec_context)s *cpu, const T dest_val, Trace::InstRecord *traceData) { uint64_t mips_nan = 0; T src_op = dest_val; int size = sizeof(src_op) * 8; if (isNan(&src_op, size)) { switch (size) { case 32: mips_nan = MIPS32_QNAN; break; case 64: mips_nan = MIPS64_QNAN; break; default: panic("Unsupported Floating Point Size (%d)", size); } //Set value to QNAN cpu->setFloatRegOperandBits(inst, 0, mips_nan, size); //Read FCSR from FloatRegFile uint32_t fcsr_bits = cpu->tcBase()->readFloatRegBits(FCSR); uint32_t new_fcsr = genInvalidVector(fcsr_bits); //Write FCSR from FloatRegFile cpu->tcBase()->setFloatRegBits(FCSR, new_fcsr); if (traceData) { traceData->setData(mips_nan); } return true; } return false; } void fpResetCauseBits(%(CPU_exec_context)s *cpu) { //Read FCSR from FloatRegFile uint32_t fcsr = cpu->tcBase()->readFloatRegBits(FCSR); // TODO: Use utility function here fcsr = bits(fcsr, 31, 18) << 18 | bits(fcsr, 11, 0); //Write FCSR from FloatRegFile cpu->tcBase()->setFloatRegBits(FCSR, fcsr); } }}; def template FloatingPointExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; %(fp_enable_check)s; //When is the right time to reset cause bits? //start of every instruction or every cycle? #if FULL_SYSTEM fpResetCauseBits(xc); #endif %(op_decl)s; %(op_rd)s; //Check if any FP operand is a NaN value if (!fpNanOperands((FPOp*)this, xc, Fd, traceData)) { %(code)s; //Change this code for Full-System/Sycall Emulation //separation //---- //Should Full System-Mode throw a fault here? //---- //Check for IEEE 754 FP Exceptions //fault = fpNanOperands((FPOp*)this, xc, Fd, traceData); if ( #if FULL_SYSTEM !fpInvalidOp((FPOp*)this, xc, Fd, traceData) && #endif fault == NoFault) { %(op_wb)s; } } return fault; } }}; // Primary format for float point operate instructions: def format FloatOp(code, *flags) {{ iop = InstObjParams(name, Name, 'FPOp', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = FloatingPointExecute.subst(iop) }}; def format FloatCompareOp(cond_code, *flags) {{ import sys code = 'bool cond;\n' if '.sf' in cond_code or 'SinglePrecision' in flags: if 'QnanException' in flags: code += 'if (isQnan(&Fs.sf, 32) || isQnan(&Ft.sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += '\treturn NoFault;' code += '}\n else ' code += 'if (isNan(&Fs.sf, 32) || isNan(&Ft.sf, 32)) {\n' elif '.df' in cond_code or 'DoublePrecision' in flags: if 'QnanException' in flags: code += 'if (isQnan(&Fs.df, 64) || isQnan(&Ft.df, 64)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += '\treturn NoFault;' code += '}\n else ' code += 'if (isNan(&Fs.df, 64) || isNan(&Ft.df, 64)) {\n' else: sys.exit('Decoder Failed: Can\'t Determine Operand Type\n') if 'UnorderedTrue' in flags: code += 'cond = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code + '}' code += 'FCSR = genCCVector(FCSR, CC, cond);\n' iop = InstObjParams(name, Name, 'FPCompareOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatConvertOp(code, *flags) {{ import sys #Determine Source Type convert = 'fpConvert(' if '.sf' in code: code = 'float ' + code + '\n' convert += 'SINGLE_TO_' elif '.df' in code: code = 'double ' + code + '\n' convert += 'DOUBLE_TO_' elif '.uw' in code: code = 'uint32_t ' + code + '\n' convert += 'WORD_TO_' elif '.ud' in code: code = 'uint64_t ' + code + '\n' convert += 'LONG_TO_' else: sys.exit("Error Determining Source Type for Conversion") #Determine Destination Type if 'ToSingle' in flags: code += 'Fd.uw = ' + convert + 'SINGLE, ' elif 'ToDouble' in flags: code += 'Fd.ud = ' + convert + 'DOUBLE, ' elif 'ToWord' in flags: code += 'Fd.uw = ' + convert + 'WORD, ' elif 'ToLong' in flags: code += 'Fd.ud = ' + convert + 'LONG, ' else: sys.exit("Error Determining Destination Type for Conversion") #Figure out how to round value if 'Ceil' in flags: code += 'ceil(val)); ' elif 'Floor' in flags: code += 'floor(val)); ' elif 'Round' in flags: code += 'roundFP(val, 0)); ' elif 'Trunc' in flags: code += 'truncFP(val));' else: code += 'val); ' iop = InstObjParams(name, Name, 'FPOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatAccOp(code, *flags) {{ iop = InstObjParams(name, Name, 'FPOp', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; // Primary format for float64 operate instructions: def format Float64Op(code, *flags) {{ iop = InstObjParams(name, Name, 'MipsStaticInst', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatPSCompareOp(cond_code1, cond_code2, *flags) {{ import sys code = 'bool cond1, cond2;\n' code += 'bool code_block1, code_block2;\n' code += 'code_block1 = code_block2 = true;\n' if 'QnanException' in flags: code += 'if (isQnan(&Fs1.sf, 32) || isQnan(&Ft1.sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += 'code_block1 = false;' code += '}\n' code += 'if (isQnan(&Fs2.sf, 32) || isQnan(&Ft2.sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += 'code_block2 = false;' code += '}\n' code += 'if (code_block1) {' code += '\tif (isNan(&Fs1.sf, 32) || isNan(&Ft1.sf, 32)) {\n' if 'UnorderedTrue' in flags: code += 'cond1 = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond1 = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code1 code += 'FCSR = genCCVector(FCSR, CC, cond1);}\n}\n' code += 'if (code_block2) {' code += '\tif (isNan(&Fs2.sf, 32) || isNan(&Ft2.sf, 32)) {\n' if 'UnorderedTrue' in flags: code += 'cond2 = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond2 = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code2 code += 'FCSR = genCCVector(FCSR, CC, cond2);}\n}' iop = InstObjParams(name, Name, 'FPCompareOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }};