// -*- mode:c++ -*- // Copyright (c) 2007 MIPS Technologies, Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Korey Sewell //////////////////////////////////////////////////////////////////// // // Floating Point operate instructions // output header {{ /** * Base class for FP operations. */ class FPOp : public MipsStaticInst { protected: /// Constructor FPOp(const char *mnem, MachInst _machInst, OpClass __opClass) : MipsStaticInst(mnem, _machInst, __opClass) { } //needs function to check for fpEnable or not }; class FPCompareOp : public FPOp { protected: FPCompareOp(const char *mnem, MachInst _machInst, OpClass __opClass) : FPOp(mnem, _machInst, __opClass) { } std::string generateDisassembly( Addr pc, const SymbolTable *symtab) const override; }; }}; output decoder {{ std::string FPCompareOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); ccprintf(ss,"%d",CC); if(_numSrcRegs > 0) { ss << ", "; printReg(ss, _srcRegIdx[0]); } if(_numSrcRegs > 1) { ss << ", "; printReg(ss, _srcRegIdx[1]); } return ss.str(); } }}; output header {{ void fpResetCauseBits(ExecContext *cpu); }}; output exec {{ inline Fault checkFpEnableFault(ExecContext *xc) { //@TODO: Implement correct CP0 checks to see if the CP1 // unit is enable or not if (!isCoprocessorEnabled(xc, 1)) return std::make_shared(1); return NoFault; } //If any operand is Nan return the appropriate QNaN template bool fpNanOperands(FPOp *inst, ExecContext *xc, const T &src_type, Trace::InstRecord *traceData) { uint64_t mips_nan = 0; assert(sizeof(T) == 4); for (int i = 0; i < inst->numSrcRegs(); i++) { uint64_t src_bits = xc->readFloatRegOperandBits(inst, 0); if (isNan(&src_bits, 32) ) { mips_nan = MIPS32_QNAN; xc->setFloatRegOperandBits(inst, 0, mips_nan); if (traceData) { traceData->setData(mips_nan); } return true; } } return false; } template bool fpInvalidOp(FPOp *inst, ExecContext *cpu, const T dest_val, Trace::InstRecord *traceData) { uint64_t mips_nan = 0; T src_op = dest_val; assert(sizeof(T) == 4); if (isNan(&src_op, 32)) { mips_nan = MIPS32_QNAN; //Set value to QNAN cpu->setFloatRegOperandBits(inst, 0, mips_nan); //Read FCSR from FloatRegFile uint32_t fcsr_bits = cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR); uint32_t new_fcsr = genInvalidVector(fcsr_bits); //Write FCSR from FloatRegFile cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, new_fcsr); if (traceData) { traceData->setData(mips_nan); } return true; } return false; } void fpResetCauseBits(ExecContext *cpu) { //Read FCSR from FloatRegFile uint32_t fcsr = cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR); // TODO: Use utility function here fcsr = bits(fcsr, 31, 18) << 18 | bits(fcsr, 11, 0); //Write FCSR from FloatRegFile cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, fcsr); } }}; def template FloatingPointExecute {{ Fault %(class_name)s::execute( ExecContext *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; %(fp_enable_check)s; //When is the right time to reset cause bits? //start of every instruction or every cycle? if (FullSystem) fpResetCauseBits(xc); %(op_decl)s; %(op_rd)s; //Check if any FP operand is a NaN value if (!fpNanOperands((FPOp*)this, xc, Fd, traceData)) { %(code)s; //Change this code for Full-System/Sycall Emulation //separation //---- //Should Full System-Mode throw a fault here? //---- //Check for IEEE 754 FP Exceptions //fault = fpNanOperands((FPOp*)this, xc, Fd, traceData); bool invalid_op = false; if (FullSystem) { invalid_op = fpInvalidOp((FPOp*)this, xc, Fd, traceData); } if (!invalid_op && fault == NoFault) { %(op_wb)s; } } return fault; } }}; // Primary format for float point operate instructions: def format FloatOp(code, *flags) {{ iop = InstObjParams(name, Name, 'FPOp', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = FloatingPointExecute.subst(iop) }}; def format FloatCompareOp(cond_code, *flags) {{ import sys code = 'bool cond;\n' if '_sf' in cond_code or 'SinglePrecision' in flags: if 'QnanException' in flags: code += 'if (isQnan(&Fs_sf, 32) || isQnan(&Ft_sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += '\treturn NoFault;' code += '}\n else ' code += 'if (isNan(&Fs_sf, 32) || isNan(&Ft_sf, 32)) {\n' elif '_df' in cond_code or 'DoublePrecision' in flags: if 'QnanException' in flags: code += 'if (isQnan(&Fs_df, 64) || isQnan(&Ft_df, 64)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += '\treturn NoFault;' code += '}\n else ' code += 'if (isNan(&Fs_df, 64) || isNan(&Ft_df, 64)) {\n' else: sys.exit('Decoder Failed: Can\'t Determine Operand Type\n') if 'UnorderedTrue' in flags: code += 'cond = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code + '}' code += 'FCSR = genCCVector(FCSR, CC, cond);\n' iop = InstObjParams(name, Name, 'FPCompareOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatConvertOp(code, *flags) {{ import sys #Determine Source Type convert = 'fpConvert(' if '_sf' in code: code = 'float ' + code + '\n' convert += 'SINGLE_TO_' elif '_df' in code: code = 'double ' + code + '\n' convert += 'DOUBLE_TO_' elif '_sw' in code: code = 'int32_t ' + code + '\n' convert += 'WORD_TO_' elif '_sd' in code: code = 'int64_t ' + code + '\n' convert += 'LONG_TO_' else: sys.exit("Error Determining Source Type for Conversion") #Determine Destination Type if 'ToSingle' in flags: code += 'Fd_uw = ' + convert + 'SINGLE, ' elif 'ToDouble' in flags: code += 'Fd_ud = ' + convert + 'DOUBLE, ' elif 'ToWord' in flags: code += 'Fd_uw = ' + convert + 'WORD, ' elif 'ToLong' in flags: code += 'Fd_ud = ' + convert + 'LONG, ' else: sys.exit("Error Determining Destination Type for Conversion") #Figure out how to round value if 'Ceil' in flags: code += 'ceil(val)); ' elif 'Floor' in flags: code += 'floor(val)); ' elif 'Round' in flags: code += 'roundFP(val, 0)); ' elif 'Trunc' in flags: code += 'truncFP(val));' else: code += 'val); ' iop = InstObjParams(name, Name, 'FPOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatAccOp(code, *flags) {{ iop = InstObjParams(name, Name, 'FPOp', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; // Primary format for float64 operate instructions: def format Float64Op(code, *flags) {{ iop = InstObjParams(name, Name, 'MipsStaticInst', code, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def format FloatPSCompareOp(cond_code1, cond_code2, *flags) {{ import sys code = 'bool cond1, cond2;\n' code += 'bool code_block1, code_block2;\n' code += 'code_block1 = code_block2 = true;\n' if 'QnanException' in flags: code += 'if (isQnan(&Fs1_sf, 32) || isQnan(&Ft1_sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += 'code_block1 = false;' code += '}\n' code += 'if (isQnan(&Fs2_sf, 32) || isQnan(&Ft2_sf, 32)) {\n' code += '\tFCSR = genInvalidVector(FCSR);\n' code += 'code_block2 = false;' code += '}\n' code += 'if (code_block1) {' code += '\tif (isNan(&Fs1_sf, 32) || isNan(&Ft1_sf, 32)) {\n' if 'UnorderedTrue' in flags: code += 'cond1 = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond1 = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code1 code += 'FCSR = genCCVector(FCSR, CC, cond1);}\n}\n' code += 'if (code_block2) {' code += '\tif (isNan(&Fs2_sf, 32) || isNan(&Ft2_sf, 32)) {\n' if 'UnorderedTrue' in flags: code += 'cond2 = 1;\n' elif 'UnorderedFalse' in flags: code += 'cond2 = 0;\n' else: sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n') code += '} else {\n' code += cond_code2 code += 'FCSR = genCCVector(FCSR, CC, cond2);}\n}' iop = InstObjParams(name, Name, 'FPCompareOp', code) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }};