# Copyright (c) 2003-2005 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt import os import sys import re import string import inspect, traceback # get type names from types import * from m5.util.grammar import Grammar debug=False ################### # Utility functions # # Indent every line in string 's' by two spaces # (except preprocessor directives). # Used to make nested code blocks look pretty. # def indent(s): return re.sub(r'(?m)^(?!#)', ' ', s) # # Munge a somewhat arbitrarily formatted piece of Python code # (e.g. from a format 'let' block) into something whose indentation # will get by the Python parser. # # The two keys here are that Python will give a syntax error if # there's any whitespace at the beginning of the first line, and that # all lines at the same lexical nesting level must have identical # indentation. Unfortunately the way code literals work, an entire # let block tends to have some initial indentation. Rather than # trying to figure out what that is and strip it off, we prepend 'if # 1:' to make the let code the nested block inside the if (and have # the parser automatically deal with the indentation for us). # # We don't want to do this if (1) the code block is empty or (2) the # first line of the block doesn't have any whitespace at the front. def fixPythonIndentation(s): # get rid of blank lines first s = re.sub(r'(?m)^\s*\n', '', s); if (s != '' and re.match(r'[ \t]', s[0])): s = 'if 1:\n' + s return s class ISAParserError(Exception): """Error handler for parser errors""" def __init__(self, first, second=None): if second is None: self.lineno = 0 self.string = first else: if hasattr(first, 'lexer'): first = first.lexer.lineno self.lineno = first self.string = second def display(self, filename_stack, print_traceback=debug): # Output formatted to work under Emacs compile-mode. Optional # 'print_traceback' arg, if set to True, prints a Python stack # backtrace too (can be handy when trying to debug the parser # itself). spaces = "" for (filename, line) in filename_stack[:-1]: print "%sIn file included from %s:" % (spaces, filename) spaces += " " # Print a Python stack backtrace if requested. if print_traceback or not self.lineno: traceback.print_exc() line_str = "%s:" % (filename_stack[-1][0], ) if self.lineno: line_str += "%d:" % (self.lineno, ) return "%s%s %s" % (spaces, line_str, self.string) def exit(self, filename_stack, print_traceback=debug): # Just call exit. sys.exit(self.display(filename_stack, print_traceback)) def error(*args): raise ISAParserError(*args) #################### # Template objects. # # Template objects are format strings that allow substitution from # the attribute spaces of other objects (e.g. InstObjParams instances). labelRE = re.compile(r'(? 1: Name += name[1:] context.update({ 'name' : name, 'Name' : Name }) try: vars = self.func(self.user_code, context, *args[0], **args[1]) except Exception, exc: if debug: raise error(lineno, 'error defining "%s": %s.' % (name, exc)) for k in vars.keys(): if k not in ('header_output', 'decoder_output', 'exec_output', 'decode_block'): del vars[k] return GenCode(parser, **vars) # Special null format to catch an implicit-format instruction # definition outside of any format block. class NoFormat(object): def __init__(self): self.defaultInst = '' def defineInst(self, parser, name, args, lineno): error(lineno, 'instruction definition "%s" with no active format!' % name) ############### # GenCode class # # The GenCode class encapsulates generated code destined for various # output files. The header_output and decoder_output attributes are # strings containing code destined for decoder.hh and decoder.cc # respectively. The decode_block attribute contains code to be # incorporated in the decode function itself (that will also end up in # decoder.cc). The exec_output attribute is a dictionary with a key # for each CPU model name; the value associated with a particular key # is the string of code for that CPU model's exec.cc file. The # has_decode_default attribute is used in the decode block to allow # explicit default clauses to override default default clauses. class GenCode(object): # Constructor. At this point we substitute out all CPU-specific # symbols. For the exec output, these go into the per-model # dictionary. For all other output types they get collapsed into # a single string. def __init__(self, parser, header_output = '', decoder_output = '', exec_output = '', decode_block = '', has_decode_default = False): self.parser = parser self.header_output = parser.expandCpuSymbolsToString(header_output) self.decoder_output = parser.expandCpuSymbolsToString(decoder_output) if isinstance(exec_output, dict): self.exec_output = exec_output elif isinstance(exec_output, str): # If the exec_output arg is a single string, we replicate # it for each of the CPU models, substituting and # %(CPU_foo)s params appropriately. self.exec_output = parser.expandCpuSymbolsToDict(exec_output) self.decode_block = parser.expandCpuSymbolsToString(decode_block) self.has_decode_default = has_decode_default # Override '+' operator: generate a new GenCode object that # concatenates all the individual strings in the operands. def __add__(self, other): exec_output = {} for cpu in self.parser.cpuModels: n = cpu.name exec_output[n] = self.exec_output[n] + other.exec_output[n] return GenCode(self.parser, self.header_output + other.header_output, self.decoder_output + other.decoder_output, exec_output, self.decode_block + other.decode_block, self.has_decode_default or other.has_decode_default) # Prepend a string (typically a comment) to all the strings. def prepend_all(self, pre): self.header_output = pre + self.header_output self.decoder_output = pre + self.decoder_output self.decode_block = pre + self.decode_block for cpu in self.parser.cpuModels: self.exec_output[cpu.name] = pre + self.exec_output[cpu.name] # Wrap the decode block in a pair of strings (e.g., 'case foo:' # and 'break;'). Used to build the big nested switch statement. def wrap_decode_block(self, pre, post = ''): self.decode_block = pre + indent(self.decode_block) + post ##################################################################### # # Bitfield Operator Support # ##################################################################### bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>') bitOpWordRE = re.compile(r'(?') bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>') def substBitOps(code): # first convert single-bit selectors to two-index form # i.e., --> code = bitOp1ArgRE.sub(r'<\1:\1>', code) # simple case: selector applied to ID (name) # i.e., foo --> bits(foo, a, b) code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code) # if selector is applied to expression (ending in ')'), # we need to search backward for matching '(' match = bitOpExprRE.search(code) while match: exprEnd = match.start() here = exprEnd - 1 nestLevel = 1 while nestLevel > 0: if code[here] == '(': nestLevel -= 1 elif code[here] == ')': nestLevel += 1 here -= 1 if here < 0: sys.exit("Didn't find '('!") exprStart = here+1 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1], match.group(1), match.group(2)) code = code[:exprStart] + newExpr + code[match.end():] match = bitOpExprRE.search(code) return code ##################################################################### # # Code Parser # # The remaining code is the support for automatically extracting # instruction characteristics from pseudocode. # ##################################################################### # Force the argument to be a list. Useful for flags, where a caller # can specify a singleton flag or a list of flags. Also usful for # converting tuples to lists so they can be modified. def makeList(arg): if isinstance(arg, list): return arg elif isinstance(arg, tuple): return list(arg) elif not arg: return [] else: return [ arg ] class Operand(object): '''Base class for operand descriptors. An instance of this class (or actually a class derived from this one) represents a specific operand for a code block (e.g, "Rc.sq" as a dest). Intermediate derived classes encapsulates the traits of a particular operand type (e.g., "32-bit integer register").''' def buildReadCode(self, func = None): subst_dict = {"name": self.base_name, "func": func, "reg_idx": self.reg_spec, "size": self.size, "ctype": self.ctype} if hasattr(self, 'src_reg_idx'): subst_dict['op_idx'] = self.src_reg_idx code = self.read_code % subst_dict if self.size != self.dflt_size: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, code, self.size-1) else: return '%s = %s;\n' % \ (self.base_name, code) def buildWriteCode(self, func = None): if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) else: final_val = self.base_name subst_dict = {"name": self.base_name, "func": func, "reg_idx": self.reg_spec, "size": self.size, "ctype": self.ctype, "final_val": final_val} if hasattr(self, 'dest_reg_idx'): subst_dict['op_idx'] = self.dest_reg_idx code = self.write_code % subst_dict return ''' { %s final_val = %s; %s; if (traceData) { traceData->setData(final_val); } }''' % (self.dflt_ctype, final_val, code) def __init__(self, parser, full_name, ext, is_src, is_dest): self.full_name = full_name self.ext = ext self.is_src = is_src self.is_dest = is_dest # The 'effective extension' (eff_ext) is either the actual # extension, if one was explicitly provided, or the default. if ext: self.eff_ext = ext else: self.eff_ext = self.dflt_ext self.size, self.ctype, self.is_signed = \ parser.operandTypeMap[self.eff_ext] # note that mem_acc_size is undefined for non-mem operands... # template must be careful not to use it if it doesn't apply. if self.isMem(): self.mem_acc_size = self.makeAccSize() if self.ctype in ['Twin32_t', 'Twin64_t']: self.mem_acc_type = 'Twin' else: self.mem_acc_type = 'uint' # Finalize additional fields (primarily code fields). This step # is done separately since some of these fields may depend on the # register index enumeration that hasn't been performed yet at the # time of __init__(). def finalize(self): self.flags = self.getFlags() self.constructor = self.makeConstructor() self.op_decl = self.makeDecl() if self.is_src: self.op_rd = self.makeRead() self.op_src_decl = self.makeDecl() else: self.op_rd = '' self.op_src_decl = '' if self.is_dest: self.op_wb = self.makeWrite() self.op_dest_decl = self.makeDecl() else: self.op_wb = '' self.op_dest_decl = '' def isMem(self): return 0 def isReg(self): return 0 def isFloatReg(self): return 0 def isIntReg(self): return 0 def isControlReg(self): return 0 def getFlags(self): # note the empty slice '[:]' gives us a copy of self.flags[0] # instead of a reference to it my_flags = self.flags[0][:] if self.is_src: my_flags += self.flags[1] if self.is_dest: my_flags += self.flags[2] return my_flags def makeDecl(self): # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. return self.ctype + ' ' + self.base_name + ' = 0;\n'; class IntRegOperand(Operand): def isReg(self): return 1 def isIntReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to read integer register as FP') if self.read_code != None: return self.buildReadCode('readIntRegOperand') if (self.size == self.dflt_size): return '%s = xc->readIntRegOperand(this, %d);\n' % \ (self.base_name, self.src_reg_idx) elif (self.size > self.dflt_size): int_reg_val = 'xc->readIntRegOperand(this, %d)' % \ (self.src_reg_idx) if (self.is_signed): int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val) return '%s = %s;\n' % (self.base_name, int_reg_val) else: return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \ (self.base_name, self.src_reg_idx, self.size-1) def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to write integer register as FP') if self.write_code != None: return self.buildWriteCode('setIntRegOperand') if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) else: final_val = self.base_name wb = ''' { %s final_val = %s; xc->setIntRegOperand(this, %d, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (self.dflt_ctype, final_val, self.dest_reg_idx) return wb class FloatRegOperand(Operand): def isReg(self): return 1 def isFloatReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): bit_select = 0 if (self.ctype == 'float' or self.ctype == 'double'): func = 'readFloatRegOperand' else: func = 'readFloatRegOperandBits' if (self.size != self.dflt_size): bit_select = 1 base = 'xc->%s(this, %d)' % (func, self.src_reg_idx) if self.read_code != None: return self.buildReadCode(func) if bit_select: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, base, self.size-1) else: return '%s = %s;\n' % (self.base_name, base) def makeWrite(self): final_val = self.base_name final_ctype = self.ctype if (self.ctype == 'float' or self.ctype == 'double'): func = 'setFloatRegOperand' elif (self.ctype == 'uint32_t' or self.ctype == 'uint64_t'): func = 'setFloatRegOperandBits' else: func = 'setFloatRegOperandBits' final_ctype = 'uint%d_t' % self.dflt_size if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) if self.write_code != None: return self.buildWriteCode(func) wb = ''' { %s final_val = %s; xc->%s(this, %d, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (final_ctype, final_val, func, self.dest_reg_idx) return wb class ControlRegOperand(Operand): def isReg(self): return 1 def isControlReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): bit_select = 0 if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to read control register as FP') if self.read_code != None: return self.buildReadCode('readMiscRegOperand') base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx if self.size == self.dflt_size: return '%s = %s;\n' % (self.base_name, base) else: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, base, self.size-1) def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to write control register as FP') if self.write_code != None: return self.buildWriteCode('setMiscRegOperand') wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \ (self.dest_reg_idx, self.base_name) wb += 'if (traceData) { traceData->setData(%s); }' % \ self.base_name return wb class MemOperand(Operand): def isMem(self): return 1 def makeConstructor(self): return '' def makeDecl(self): # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. # Declare memory data variable. if self.ctype in ['Twin32_t','Twin64_t']: return "%s %s; %s.a = 0; %s.b = 0;\n" % \ (self.ctype, self.base_name, self.base_name, self.base_name) return '%s %s = 0;\n' % (self.ctype, self.base_name) def makeRead(self): if self.read_code != None: return self.buildReadCode() return '' def makeWrite(self): if self.write_code != None: return self.buildWriteCode() return '' # Return the memory access size *in bits*, suitable for # forming a type via "uint%d_t". Divide by 8 if you want bytes. def makeAccSize(self): return self.size class PCStateOperand(Operand): def makeConstructor(self): return '' def makeRead(self): return '%s = xc->pcState();\n' % self.base_name def makeWrite(self): return 'xc->pcState(%s);\n' % self.base_name def makeDecl(self): return 'TheISA::PCState ' + self.base_name + ' M5_VAR_USED;\n'; class PCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): return '%s = xc->instAddr();\n' % self.base_name class UPCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): if self.read_code != None: return self.buildReadCode('microPC') return '%s = xc->microPC();\n' % self.base_name class NPCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): if self.read_code != None: return self.buildReadCode('nextInstAddr') return '%s = xc->nextInstAddr();\n' % self.base_name class OperandList(object): '''Find all the operands in the given code block. Returns an operand descriptor list (instance of class OperandList).''' def __init__(self, parser, code): self.items = [] self.bases = {} # delete comments so we don't match on reg specifiers inside code = commentRE.sub('', code) # search for operands next_pos = 0 while 1: match = parser.operandsRE.search(code, next_pos) if not match: # no more matches: we're done break op = match.groups() # regexp groups are operand full name, base, and extension (op_full, op_base, op_ext) = op # if the token following the operand is an assignment, this is # a destination (LHS), else it's a source (RHS) is_dest = (assignRE.match(code, match.end()) != None) is_src = not is_dest # see if we've already seen this one op_desc = self.find_base(op_base) if op_desc: if op_desc.ext != op_ext: error('Inconsistent extensions for operand %s' % \ op_base) op_desc.is_src = op_desc.is_src or is_src op_desc.is_dest = op_desc.is_dest or is_dest else: # new operand: create new descriptor op_desc = parser.operandNameMap[op_base](parser, op_full, op_ext, is_src, is_dest) self.append(op_desc) # start next search after end of current match next_pos = match.end() self.sort() # enumerate source & dest register operands... used in building # constructor later self.numSrcRegs = 0 self.numDestRegs = 0 self.numFPDestRegs = 0 self.numIntDestRegs = 0 self.memOperand = None for op_desc in self.items: if op_desc.isReg(): if op_desc.is_src: op_desc.src_reg_idx = self.numSrcRegs self.numSrcRegs += 1 if op_desc.is_dest: op_desc.dest_reg_idx = self.numDestRegs self.numDestRegs += 1 if op_desc.isFloatReg(): self.numFPDestRegs += 1 elif op_desc.isIntReg(): self.numIntDestRegs += 1 elif op_desc.isMem(): if self.memOperand: error("Code block has more than one memory operand.") self.memOperand = op_desc if parser.maxInstSrcRegs < self.numSrcRegs: parser.maxInstSrcRegs = self.numSrcRegs if parser.maxInstDestRegs < self.numDestRegs: parser.maxInstDestRegs = self.numDestRegs # now make a final pass to finalize op_desc fields that may depend # on the register enumeration for op_desc in self.items: op_desc.finalize() def __len__(self): return len(self.items) def __getitem__(self, index): return self.items[index] def append(self, op_desc): self.items.append(op_desc) self.bases[op_desc.base_name] = op_desc def find_base(self, base_name): # like self.bases[base_name], but returns None if not found # (rather than raising exception) return self.bases.get(base_name) # internal helper function for concat[Some]Attr{Strings|Lists} def __internalConcatAttrs(self, attr_name, filter, result): for op_desc in self.items: if filter(op_desc): result += getattr(op_desc, attr_name) return result # return a single string that is the concatenation of the (string) # values of the specified attribute for all operands def concatAttrStrings(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, '') # like concatAttrStrings, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrStrings(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, '') # return a single list that is the concatenation of the (list) # values of the specified attribute for all operands def concatAttrLists(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, []) # like concatAttrLists, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrLists(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, []) def sort(self): self.items.sort(lambda a, b: a.sort_pri - b.sort_pri) class SubOperandList(OperandList): '''Find all the operands in the given code block. Returns an operand descriptor list (instance of class OperandList).''' def __init__(self, parser, code, master_list): self.items = [] self.bases = {} # delete comments so we don't match on reg specifiers inside code = commentRE.sub('', code) # search for operands next_pos = 0 while 1: match = parser.operandsRE.search(code, next_pos) if not match: # no more matches: we're done break op = match.groups() # regexp groups are operand full name, base, and extension (op_full, op_base, op_ext) = op # find this op in the master list op_desc = master_list.find_base(op_base) if not op_desc: error('Found operand %s which is not in the master list!' \ ' This is an internal error' % op_base) else: # See if we've already found this operand op_desc = self.find_base(op_base) if not op_desc: # if not, add a reference to it to this sub list self.append(master_list.bases[op_base]) # start next search after end of current match next_pos = match.end() self.sort() self.memOperand = None for op_desc in self.items: if op_desc.isMem(): if self.memOperand: error("Code block has more than one memory operand.") self.memOperand = op_desc # Regular expression object to match C++ comments # (used in findOperands()) commentRE = re.compile(r'//.*\n') # Regular expression object to match assignment statements # (used in findOperands()) assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE) def makeFlagConstructor(flag_list): if len(flag_list) == 0: return '' # filter out repeated flags flag_list.sort() i = 1 while i < len(flag_list): if flag_list[i] == flag_list[i-1]: del flag_list[i] else: i += 1 pre = '\n\tflags[' post = '] = true;' code = pre + string.join(flag_list, post + pre) + post return code # Assume all instruction flags are of the form 'IsFoo' instFlagRE = re.compile(r'Is.*') # OpClass constants end in 'Op' except No_OpClass opClassRE = re.compile(r'.*Op|No_OpClass') class InstObjParams(object): def __init__(self, parser, mnem, class_name, base_class = '', snippets = {}, opt_args = []): self.mnemonic = mnem self.class_name = class_name self.base_class = base_class if not isinstance(snippets, dict): snippets = {'code' : snippets} compositeCode = ' '.join(map(str, snippets.values())) self.snippets = snippets self.operands = OperandList(parser, compositeCode) self.constructor = self.operands.concatAttrStrings('constructor') self.constructor += \ '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs self.constructor += \ '\n\t_numDestRegs = %d;' % self.operands.numDestRegs self.constructor += \ '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs self.constructor += \ '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs self.flags = self.operands.concatAttrLists('flags') # Make a basic guess on the operand class (function unit type). # These are good enough for most cases, and can be overridden # later otherwise. if 'IsStore' in self.flags: self.op_class = 'MemWriteOp' elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags: self.op_class = 'MemReadOp' elif 'IsFloating' in self.flags: self.op_class = 'FloatAddOp' else: self.op_class = 'IntAluOp' # Optional arguments are assumed to be either StaticInst flags # or an OpClass value. To avoid having to import a complete # list of these values to match against, we do it ad-hoc # with regexps. for oa in opt_args: if instFlagRE.match(oa): self.flags.append(oa) elif opClassRE.match(oa): self.op_class = oa else: error('InstObjParams: optional arg "%s" not recognized ' 'as StaticInst::Flag or OpClass.' % oa) # add flag initialization to contructor here to include # any flags added via opt_args self.constructor += makeFlagConstructor(self.flags) # if 'IsFloating' is set, add call to the FP enable check # function (which should be provided by isa_desc via a declare) if 'IsFloating' in self.flags: self.fp_enable_check = 'fault = checkFpEnableFault(xc);' else: self.fp_enable_check = '' ############## # Stack: a simple stack object. Used for both formats (formatStack) # and default cases (defaultStack). Simply wraps a list to give more # stack-like syntax and enable initialization with an argument list # (as opposed to an argument that's a list). class Stack(list): def __init__(self, *items): list.__init__(self, items) def push(self, item): self.append(item); def top(self): return self[-1] ####################### # # Output file template # file_template = ''' /* * DO NOT EDIT THIS FILE!!! * * It was automatically generated from the ISA description in %(filename)s */ %(includes)s %(global_output)s namespace %(namespace)s { %(namespace_output)s } // namespace %(namespace)s %(decode_function)s ''' max_inst_regs_template = ''' /* * DO NOT EDIT THIS FILE!!! * * It was automatically generated from the ISA description in %(filename)s */ namespace %(namespace)s { const int MaxInstSrcRegs = %(MaxInstSrcRegs)d; const int MaxInstDestRegs = %(MaxInstDestRegs)d; } // namespace %(namespace)s ''' class ISAParser(Grammar): def __init__(self, output_dir, cpu_models): super(ISAParser, self).__init__() self.output_dir = output_dir self.cpuModels = cpu_models # variable to hold templates self.templateMap = {} # This dictionary maps format name strings to Format objects. self.formatMap = {} # The format stack. self.formatStack = Stack(NoFormat()) # The default case stack. self.defaultStack = Stack(None) # Stack that tracks current file and line number. Each # element is a tuple (filename, lineno) that records the # *current* filename and the line number in the *previous* # file where it was included. self.fileNameStack = Stack() symbols = ('makeList', 're', 'string') self.exportContext = dict([(s, eval(s)) for s in symbols]) self.maxInstSrcRegs = 0 self.maxInstDestRegs = 0 ##################################################################### # # Lexer # # The PLY lexer module takes two things as input: # - A list of token names (the string list 'tokens') # - A regular expression describing a match for each token. The # regexp for token FOO can be provided in two ways: # - as a string variable named t_FOO # - as the doc string for a function named t_FOO. In this case, # the function is also executed, allowing an action to be # associated with each token match. # ##################################################################### # Reserved words. These are listed separately as they are matched # using the same regexp as generic IDs, but distinguished in the # t_ID() function. The PLY documentation suggests this approach. reserved = ( 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT', 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS', 'OUTPUT', 'SIGNED', 'TEMPLATE' ) # List of tokens. The lex module requires this. tokens = reserved + ( # identifier 'ID', # integer literal 'INTLIT', # string literal 'STRLIT', # code literal 'CODELIT', # ( ) [ ] { } < > , ; . : :: * 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'LESS', 'GREATER', 'EQUALS', 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON', 'ASTERISK', # C preprocessor directives 'CPPDIRECTIVE' # The following are matched but never returned. commented out to # suppress PLY warning # newfile directive # 'NEWFILE', # endfile directive # 'ENDFILE' ) # Regular expressions for token matching t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACKET = r'\[' t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_LESS = r'\<' t_GREATER = r'\>' t_EQUALS = r'=' t_COMMA = r',' t_SEMI = r';' t_DOT = r'\.' t_COLON = r':' t_DBLCOLON = r'::' t_ASTERISK = r'\*' # Identifiers and reserved words reserved_map = { } for r in reserved: reserved_map[r.lower()] = r def t_ID(self, t): r'[A-Za-z_]\w*' t.type = self.reserved_map.get(t.value, 'ID') return t # Integer literal def t_INTLIT(self, t): r'-?(0x[\da-fA-F]+)|\d+' try: t.value = int(t.value,0) except ValueError: error(t, 'Integer value "%s" too large' % t.value) t.value = 0 return t # String literal. Note that these use only single quotes, and # can span multiple lines. def t_STRLIT(self, t): r"(?m)'([^'])+'" # strip off quotes t.value = t.value[1:-1] t.lexer.lineno += t.value.count('\n') return t # "Code literal"... like a string literal, but delimiters are # '{{' and '}}' so they get formatted nicely under emacs c-mode def t_CODELIT(self, t): r"(?m)\{\{([^\}]|}(?!\}))+\}\}" # strip off {{ & }} t.value = t.value[2:-2] t.lexer.lineno += t.value.count('\n') return t def t_CPPDIRECTIVE(self, t): r'^\#[^\#].*\n' t.lexer.lineno += t.value.count('\n') return t def t_NEWFILE(self, t): r'^\#\#newfile\s+"[\w/.-]*"' self.fileNameStack.push((t.value[11:-1], t.lexer.lineno)) t.lexer.lineno = 0 def t_ENDFILE(self, t): r'^\#\#endfile' (old_filename, t.lexer.lineno) = self.fileNameStack.pop() # # The functions t_NEWLINE, t_ignore, and t_error are # special for the lex module. # # Newlines def t_NEWLINE(self, t): r'\n+' t.lexer.lineno += t.value.count('\n') # Comments def t_comment(self, t): r'//.*' # Completely ignored characters t_ignore = ' \t\x0c' # Error handler def t_error(self, t): error(t, "illegal character '%s'" % t.value[0]) t.skip(1) ##################################################################### # # Parser # # Every function whose name starts with 'p_' defines a grammar # rule. The rule is encoded in the function's doc string, while # the function body provides the action taken when the rule is # matched. The argument to each function is a list of the values # of the rule's symbols: t[0] for the LHS, and t[1..n] for the # symbols on the RHS. For tokens, the value is copied from the # t.value attribute provided by the lexer. For non-terminals, the # value is assigned by the producing rule; i.e., the job of the # grammar rule function is to set the value for the non-terminal # on the LHS (by assigning to t[0]). ##################################################################### # The LHS of the first grammar rule is used as the start symbol # (in this case, 'specification'). Note that this rule enforces # that there will be exactly one namespace declaration, with 0 or # more global defs/decls before and after it. The defs & decls # before the namespace decl will be outside the namespace; those # after will be inside. The decoder function is always inside the # namespace. def p_specification(self, t): 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block' global_code = t[1] isa_name = t[2] namespace = isa_name + "Inst" # wrap the decode block as a function definition t[4].wrap_decode_block(''' StaticInstPtr %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst) { using namespace %(namespace)s; ''' % vars(), '}') # both the latter output blocks and the decode block are in # the namespace namespace_code = t[3] + t[4] # pass it all back to the caller of yacc.parse() t[0] = (isa_name, namespace, global_code, namespace_code) # ISA name declaration looks like "namespace ;" def p_name_decl(self, t): 'name_decl : NAMESPACE ID SEMI' t[0] = t[2] # 'opt_defs_and_outputs' is a possibly empty sequence of # def and/or output statements. def p_opt_defs_and_outputs_0(self, t): 'opt_defs_and_outputs : empty' t[0] = GenCode(self) def p_opt_defs_and_outputs_1(self, t): 'opt_defs_and_outputs : defs_and_outputs' t[0] = t[1] def p_defs_and_outputs_0(self, t): 'defs_and_outputs : def_or_output' t[0] = t[1] def p_defs_and_outputs_1(self, t): 'defs_and_outputs : defs_and_outputs def_or_output' t[0] = t[1] + t[2] # The list of possible definition/output statements. def p_def_or_output(self, t): '''def_or_output : def_format | def_bitfield | def_bitfield_struct | def_template | def_operand_types | def_operands | output_header | output_decoder | output_exec | global_let''' t[0] = t[1] # Output blocks 'output {{...}}' (C++ code blocks) are copied # directly to the appropriate output section. # Massage output block by substituting in template definitions and # bit operators. We handle '%'s embedded in the string that don't # indicate template substitutions (or CPU-specific symbols, which # get handled in GenCode) by doubling them first so that the # format operation will reduce them back to single '%'s. def process_output(self, s): s = self.protectNonSubstPercents(s) # protects cpu-specific symbols too s = self.protectCpuSymbols(s) return substBitOps(s % self.templateMap) def p_output_header(self, t): 'output_header : OUTPUT HEADER CODELIT SEMI' t[0] = GenCode(self, header_output = self.process_output(t[3])) def p_output_decoder(self, t): 'output_decoder : OUTPUT DECODER CODELIT SEMI' t[0] = GenCode(self, decoder_output = self.process_output(t[3])) def p_output_exec(self, t): 'output_exec : OUTPUT EXEC CODELIT SEMI' t[0] = GenCode(self, exec_output = self.process_output(t[3])) # global let blocks 'let {{...}}' (Python code blocks) are # executed directly when seen. Note that these execute in a # special variable context 'exportContext' to prevent the code # from polluting this script's namespace. def p_global_let(self, t): 'global_let : LET CODELIT SEMI' self.updateExportContext() self.exportContext["header_output"] = '' self.exportContext["decoder_output"] = '' self.exportContext["exec_output"] = '' self.exportContext["decode_block"] = '' try: exec fixPythonIndentation(t[2]) in self.exportContext except Exception, exc: if debug: raise error(t, 'error: %s in global let block "%s".' % (exc, t[2])) t[0] = GenCode(self, header_output=self.exportContext["header_output"], decoder_output=self.exportContext["decoder_output"], exec_output=self.exportContext["exec_output"], decode_block=self.exportContext["decode_block"]) # Define the mapping from operand type extensions to C++ types and # bit widths (stored in operandTypeMap). def p_def_operand_types(self, t): 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' try: user_dict = eval('{' + t[3] + '}') except Exception, exc: if debug: raise error(t, 'error: %s in def operand_types block "%s".' % (exc, t[3])) self.buildOperandTypeMap(user_dict, t.lexer.lineno) t[0] = GenCode(self) # contributes nothing to the output C++ file # Define the mapping from operand names to operand classes and # other traits. Stored in operandNameMap. def p_def_operands(self, t): 'def_operands : DEF OPERANDS CODELIT SEMI' if not hasattr(self, 'operandTypeMap'): error(t, 'error: operand types must be defined before operands') try: user_dict = eval('{' + t[3] + '}', self.exportContext) except Exception, exc: if debug: raise error(t, 'error: %s in def operands block "%s".' % (exc, t[3])) self.buildOperandNameMap(user_dict, t.lexer.lineno) t[0] = GenCode(self) # contributes nothing to the output C++ file # A bitfield definition looks like: # 'def [signed] bitfield [:]' # This generates a preprocessor macro in the output file. def p_def_bitfield_0(self, t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) t[0] = GenCode(self, header_output=hash_define) # alternate form for single bit: 'def [signed] bitfield []' def p_def_bitfield_1(self, t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) t[0] = GenCode(self, header_output=hash_define) # alternate form for structure member: 'def bitfield ' def p_def_bitfield_struct(self, t): 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI' if (t[2] != ''): error(t, 'error: structure bitfields are always unsigned.') expr = 'machInst.%s' % t[5] hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) t[0] = GenCode(self, header_output=hash_define) def p_id_with_dot_0(self, t): 'id_with_dot : ID' t[0] = t[1] def p_id_with_dot_1(self, t): 'id_with_dot : ID DOT id_with_dot' t[0] = t[1] + t[2] + t[3] def p_opt_signed_0(self, t): 'opt_signed : SIGNED' t[0] = t[1] def p_opt_signed_1(self, t): 'opt_signed : empty' t[0] = '' def p_def_template(self, t): 'def_template : DEF TEMPLATE ID CODELIT SEMI' self.templateMap[t[3]] = Template(self, t[4]) t[0] = GenCode(self) # An instruction format definition looks like # "def format () {{...}};" def p_def_format(self, t): 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' (id, params, code) = (t[3], t[5], t[7]) self.defFormat(id, params, code, t.lexer.lineno) t[0] = GenCode(self) # The formal parameter list for an instruction format is a # possibly empty list of comma-separated parameters. Positional # (standard, non-keyword) parameters must come first, followed by # keyword parameters, followed by a '*foo' parameter that gets # excess positional arguments (as in Python). Each of these three # parameter categories is optional. # # Note that we do not support the '**foo' parameter for collecting # otherwise undefined keyword args. Otherwise the parameter list # is (I believe) identical to what is supported in Python. # # The param list generates a tuple, where the first element is a # list of the positional params and the second element is a dict # containing the keyword params. def p_param_list_0(self, t): 'param_list : positional_param_list COMMA nonpositional_param_list' t[0] = t[1] + t[3] def p_param_list_1(self, t): '''param_list : positional_param_list | nonpositional_param_list''' t[0] = t[1] def p_positional_param_list_0(self, t): 'positional_param_list : empty' t[0] = [] def p_positional_param_list_1(self, t): 'positional_param_list : ID' t[0] = [t[1]] def p_positional_param_list_2(self, t): 'positional_param_list : positional_param_list COMMA ID' t[0] = t[1] + [t[3]] def p_nonpositional_param_list_0(self, t): 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' t[0] = t[1] + t[3] def p_nonpositional_param_list_1(self, t): '''nonpositional_param_list : keyword_param_list | excess_args_param''' t[0] = t[1] def p_keyword_param_list_0(self, t): 'keyword_param_list : keyword_param' t[0] = [t[1]] def p_keyword_param_list_1(self, t): 'keyword_param_list : keyword_param_list COMMA keyword_param' t[0] = t[1] + [t[3]] def p_keyword_param(self, t): 'keyword_param : ID EQUALS expr' t[0] = t[1] + ' = ' + t[3].__repr__() def p_excess_args_param(self, t): 'excess_args_param : ASTERISK ID' # Just concatenate them: '*ID'. Wrap in list to be consistent # with positional_param_list and keyword_param_list. t[0] = [t[1] + t[2]] # End of format definition-related rules. ############## # # A decode block looks like: # decode [, ]* [default ] { ... } # def p_decode_block(self, t): 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' default_defaults = self.defaultStack.pop() codeObj = t[5] # use the "default defaults" only if there was no explicit # default statement in decode_stmt_list if not codeObj.has_decode_default: codeObj += default_defaults codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') t[0] = codeObj # The opt_default statement serves only to push the "default # defaults" onto defaultStack. This value will be used by nested # decode blocks, and used and popped off when the current # decode_block is processed (in p_decode_block() above). def p_opt_default_0(self, t): 'opt_default : empty' # no default specified: reuse the one currently at the top of # the stack self.defaultStack.push(self.defaultStack.top()) # no meaningful value returned t[0] = None def p_opt_default_1(self, t): 'opt_default : DEFAULT inst' # push the new default codeObj = t[2] codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') self.defaultStack.push(codeObj) # no meaningful value returned t[0] = None def p_decode_stmt_list_0(self, t): 'decode_stmt_list : decode_stmt' t[0] = t[1] def p_decode_stmt_list_1(self, t): 'decode_stmt_list : decode_stmt decode_stmt_list' if (t[1].has_decode_default and t[2].has_decode_default): error(t, 'Two default cases in decode block') t[0] = t[1] + t[2] # # Decode statement rules # # There are four types of statements allowed in a decode block: # 1. Format blocks 'format { ... }' # 2. Nested decode blocks # 3. Instruction definitions. # 4. C preprocessor directives. # Preprocessor directives found in a decode statement list are # passed through to the output, replicated to all of the output # code streams. This works well for ifdefs, so we can ifdef out # both the declarations and the decode cases generated by an # instruction definition. Handling them as part of the grammar # makes it easy to keep them in the right place with respect to # the code generated by the other statements. def p_decode_stmt_cpp(self, t): 'decode_stmt : CPPDIRECTIVE' t[0] = GenCode(self, t[1], t[1], t[1], t[1]) # A format block 'format { ... }' sets the default # instruction format used to handle instruction definitions inside # the block. This format can be overridden by using an explicit # format on the instruction definition or with a nested format # block. def p_decode_stmt_format(self, t): 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' # The format will be pushed on the stack when 'push_format_id' # is processed (see below). Once the parser has recognized # the full production (though the right brace), we're done # with the format, so now we can pop it. self.formatStack.pop() t[0] = t[4] # This rule exists so we can set the current format (& push the # stack) when we recognize the format name part of the format # block. def p_push_format_id(self, t): 'push_format_id : ID' try: self.formatStack.push(self.formatMap[t[1]]) t[0] = ('', '// format %s' % t[1]) except KeyError: error(t, 'instruction format "%s" not defined.' % t[1]) # Nested decode block: if the value of the current field matches # the specified constant, do a nested decode on some other field. def p_decode_stmt_decode(self, t): 'decode_stmt : case_label COLON decode_block' label = t[1] codeObj = t[3] # just wrap the decoding code from the block as a case in the # outer switch statement. codeObj.wrap_decode_block('\n%s:\n' % label) codeObj.has_decode_default = (label == 'default') t[0] = codeObj # Instruction definition (finally!). def p_decode_stmt_inst(self, t): 'decode_stmt : case_label COLON inst SEMI' label = t[1] codeObj = t[3] codeObj.wrap_decode_block('\n%s:' % label, 'break;\n') codeObj.has_decode_default = (label == 'default') t[0] = codeObj # The case label is either a list of one or more constants or # 'default' def p_case_label_0(self, t): 'case_label : intlit_list' def make_case(intlit): if intlit >= 2**32: return 'case ULL(%#x)' % intlit else: return 'case %#x' % intlit t[0] = ': '.join(map(make_case, t[1])) def p_case_label_1(self, t): 'case_label : DEFAULT' t[0] = 'default' # # The constant list for a decode case label must be non-empty, but # may have one or more comma-separated integer literals in it. # def p_intlit_list_0(self, t): 'intlit_list : INTLIT' t[0] = [t[1]] def p_intlit_list_1(self, t): 'intlit_list : intlit_list COMMA INTLIT' t[0] = t[1] t[0].append(t[3]) # Define an instruction using the current instruction format # (specified by an enclosing format block). # "()" def p_inst_0(self, t): 'inst : ID LPAREN arg_list RPAREN' # Pass the ID and arg list to the current format class to deal with. currentFormat = self.formatStack.top() codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno) args = ','.join(map(str, t[3])) args = re.sub('(?m)^', '//', args) args = re.sub('^//', '', args) comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) codeObj.prepend_all(comment) t[0] = codeObj # Define an instruction using an explicitly specified format: # "::()" def p_inst_1(self, t): 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' try: format = self.formatMap[t[1]] except KeyError: error(t, 'instruction format "%s" not defined.' % t[1]) codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno) comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) codeObj.prepend_all(comment) t[0] = codeObj # The arg list generates a tuple, where the first element is a # list of the positional args and the second element is a dict # containing the keyword args. def p_arg_list_0(self, t): 'arg_list : positional_arg_list COMMA keyword_arg_list' t[0] = ( t[1], t[3] ) def p_arg_list_1(self, t): 'arg_list : positional_arg_list' t[0] = ( t[1], {} ) def p_arg_list_2(self, t): 'arg_list : keyword_arg_list' t[0] = ( [], t[1] ) def p_positional_arg_list_0(self, t): 'positional_arg_list : empty' t[0] = [] def p_positional_arg_list_1(self, t): 'positional_arg_list : expr' t[0] = [t[1]] def p_positional_arg_list_2(self, t): 'positional_arg_list : positional_arg_list COMMA expr' t[0] = t[1] + [t[3]] def p_keyword_arg_list_0(self, t): 'keyword_arg_list : keyword_arg' t[0] = t[1] def p_keyword_arg_list_1(self, t): 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' t[0] = t[1] t[0].update(t[3]) def p_keyword_arg(self, t): 'keyword_arg : ID EQUALS expr' t[0] = { t[1] : t[3] } # # Basic expressions. These constitute the argument values of # "function calls" (i.e. instruction definitions in the decode # block) and default values for formal parameters of format # functions. # # Right now, these are either strings, integers, or (recursively) # lists of exprs (using Python square-bracket list syntax). Note # that bare identifiers are trated as string constants here (since # there isn't really a variable namespace to refer to). # def p_expr_0(self, t): '''expr : ID | INTLIT | STRLIT | CODELIT''' t[0] = t[1] def p_expr_1(self, t): '''expr : LBRACKET list_expr RBRACKET''' t[0] = t[2] def p_list_expr_0(self, t): 'list_expr : expr' t[0] = [t[1]] def p_list_expr_1(self, t): 'list_expr : list_expr COMMA expr' t[0] = t[1] + [t[3]] def p_list_expr_2(self, t): 'list_expr : empty' t[0] = [] # # Empty production... use in other rules for readability. # def p_empty(self, t): 'empty :' pass # Parse error handler. Note that the argument here is the # offending *token*, not a grammar symbol (hence the need to use # t.value) def p_error(self, t): if t: error(t, "syntax error at '%s'" % t.value) else: error("unknown syntax error") # END OF GRAMMAR RULES def updateExportContext(self): # create a continuation that allows us to grab the current parser def wrapInstObjParams(*args): return InstObjParams(self, *args) self.exportContext['InstObjParams'] = wrapInstObjParams self.exportContext.update(self.templateMap) def defFormat(self, id, params, code, lineno): '''Define a new format''' # make sure we haven't already defined this one if id in self.formatMap: error(lineno, 'format %s redefined.' % id) # create new object and store in global map self.formatMap[id] = Format(id, params, code) def expandCpuSymbolsToDict(self, template): '''Expand template with CPU-specific references into a dictionary with an entry for each CPU model name. The entry key is the model name and the corresponding value is the template with the CPU-specific refs substituted for that model.''' # Protect '%'s that don't go with CPU-specific terms t = re.sub(r'%(?!\(CPU_)', '%%', template) result = {} for cpu in self.cpuModels: result[cpu.name] = t % cpu.strings return result def expandCpuSymbolsToString(self, template): '''*If* the template has CPU-specific references, return a single string containing a copy of the template for each CPU model with the corresponding values substituted in. If the template has no CPU-specific references, it is returned unmodified.''' if template.find('%(CPU_') != -1: return reduce(lambda x,y: x+y, self.expandCpuSymbolsToDict(template).values()) else: return template def protectCpuSymbols(self, template): '''Protect CPU-specific references by doubling the corresponding '%'s (in preparation for substituting a different set of references into the template).''' return re.sub(r'%(?=\(CPU_)', '%%', template) def protectNonSubstPercents(self, s): '''Protect any non-dict-substitution '%'s in a format string (i.e. those not followed by '(')''' return re.sub(r'%(?!\()', '%%', s) def buildOperandTypeMap(self, user_dict, lineno): """Generate operandTypeMap from the user's 'def operand_types' statement.""" operand_type = {} for (ext, (desc, size)) in user_dict.iteritems(): if desc == 'signed int': ctype = 'int%d_t' % size is_signed = 1 elif desc == 'unsigned int': ctype = 'uint%d_t' % size is_signed = 0 elif desc == 'float': is_signed = 1 # shouldn't really matter if size == 32: ctype = 'float' elif size == 64: ctype = 'double' elif desc == 'twin64 int': is_signed = 0 ctype = 'Twin64_t' elif desc == 'twin32 int': is_signed = 0 ctype = 'Twin32_t' if ctype == '': error(parser, lineno, 'Unrecognized type description "%s" in user_dict') operand_type[ext] = (size, ctype, is_signed) self.operandTypeMap = operand_type def buildOperandNameMap(self, user_dict, lineno): operand_name = {} for op_name, val in user_dict.iteritems(): base_cls_name, dflt_ext, reg_spec, flags, sort_pri = val[:5] if len(val) > 5: read_code = val[5] else: read_code = None if len(val) > 6: write_code = val[6] else: write_code = None if len(val) > 7: error(lineno, 'error: too many attributes for operand "%s"' % base_cls_name) (dflt_size, dflt_ctype, dflt_is_signed) = \ self.operandTypeMap[dflt_ext] # Canonical flag structure is a triple of lists, where each list # indicates the set of flags implied by this operand always, when # used as a source, and when used as a dest, respectively. # For simplicity this can be initialized using a variety of fairly # obvious shortcuts; we convert these to canonical form here. if not flags: # no flags specified (e.g., 'None') flags = ( [], [], [] ) elif isinstance(flags, str): # a single flag: assumed to be unconditional flags = ( [ flags ], [], [] ) elif isinstance(flags, list): # a list of flags: also assumed to be unconditional flags = ( flags, [], [] ) elif isinstance(flags, tuple): # it's a tuple: it should be a triple, # but each item could be a single string or a list (uncond_flags, src_flags, dest_flags) = flags flags = (makeList(uncond_flags), makeList(src_flags), makeList(dest_flags)) # Accumulate attributes of new operand class in tmp_dict tmp_dict = {} for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri', 'dflt_size', 'dflt_ctype', 'dflt_is_signed', 'read_code', 'write_code'): tmp_dict[attr] = eval(attr) tmp_dict['base_name'] = op_name # New class name will be e.g. "IntReg_Ra" cls_name = base_cls_name + '_' + op_name # Evaluate string arg to get class object. Note that the # actual base class for "IntReg" is "IntRegOperand", i.e. we # have to append "Operand". try: base_cls = eval(base_cls_name + 'Operand') except NameError: error(lineno, 'error: unknown operand base class "%s"' % base_cls_name) # The following statement creates a new class called # as a subclass of with the attributes # in tmp_dict, just as if we evaluated a class declaration. operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict) self.operandNameMap = operand_name # Define operand variables. operands = user_dict.keys() operandsREString = (r''' (?[\w/.-]*)".*$', re.MULTILINE) def replace_include(self, matchobj, dirname): """Function to replace a matched '##include' directive with the contents of the specified file (with nested ##includes replaced recursively). 'matchobj' is an re match object (from a match of includeRE) and 'dirname' is the directory relative to which the file path should be resolved.""" fname = matchobj.group('filename') full_fname = os.path.normpath(os.path.join(dirname, fname)) contents = '##newfile "%s"\n%s\n##endfile\n' % \ (full_fname, self.read_and_flatten(full_fname)) return contents def read_and_flatten(self, filename): """Read a file and recursively flatten nested '##include' files.""" current_dir = os.path.dirname(filename) try: contents = open(filename).read() except IOError: error('Error including file "%s"' % filename) self.fileNameStack.push((filename, 0)) # Find any includes and include them def replace(matchobj): return self.replace_include(matchobj, current_dir) contents = self.includeRE.sub(replace, contents) self.fileNameStack.pop() return contents def _parse_isa_desc(self, isa_desc_file): '''Read in and parse the ISA description.''' # Read file and (recursively) all included files into a string. # PLY requires that the input be in a single string so we have to # do this up front. isa_desc = self.read_and_flatten(isa_desc_file) # Initialize filename stack with outer file. self.fileNameStack.push((isa_desc_file, 0)) # Parse it. (isa_name, namespace, global_code, namespace_code) = \ self.parse(isa_desc) # grab the last three path components of isa_desc_file to put in # the output filename = '/'.join(isa_desc_file.split('/')[-3:]) # generate decoder.hh includes = '#include "base/bitfield.hh" // for bitfield support' global_output = global_code.header_output namespace_output = namespace_code.header_output decode_function = '' self.update_if_needed('decoder.hh', file_template % vars()) # generate decoder.cc includes = '#include "decoder.hh"' global_output = global_code.decoder_output namespace_output = namespace_code.decoder_output # namespace_output += namespace_code.decode_block decode_function = namespace_code.decode_block self.update_if_needed('decoder.cc', file_template % vars()) # generate per-cpu exec files for cpu in self.cpuModels: includes = '#include "decoder.hh"\n' includes += cpu.includes global_output = global_code.exec_output[cpu.name] namespace_output = namespace_code.exec_output[cpu.name] decode_function = '' self.update_if_needed(cpu.filename, file_template % vars()) # The variable names here are hacky, but this will creat local # variables which will be referenced in vars() which have the # value of the globals. MaxInstSrcRegs = self.maxInstSrcRegs MaxInstDestRegs = self.maxInstDestRegs # max_inst_regs.hh self.update_if_needed('max_inst_regs.hh', max_inst_regs_template % vars()) def parse_isa_desc(self, *args, **kwargs): try: self._parse_isa_desc(*args, **kwargs) except ISAParserError, e: e.exit(self.fileNameStack) # Called as script: get args from command line. # Args are: if __name__ == '__main__': execfile(sys.argv[1]) # read in CpuModel definitions cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]] ISAParser(sys.argv[3], cpu_models).parse_isa_desc(sys.argv[2])