# Copyright (c) 2003-2005 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt import os import sys import re import string import traceback # get type names from types import * # Prepend the directory where the PLY lex & yacc modules are found # to the search path. Assumes we're compiling in a subdirectory # of 'build' in the current tree. sys.path[0:0] = [os.environ['M5_PLY']] import lex import yacc ##################################################################### # # Lexer # # The PLY lexer module takes two things as input: # - A list of token names (the string list 'tokens') # - A regular expression describing a match for each token. The # regexp for token FOO can be provided in two ways: # - as a string variable named t_FOO # - as the doc string for a function named t_FOO. In this case, # the function is also executed, allowing an action to be # associated with each token match. # ##################################################################### # Reserved words. These are listed separately as they are matched # using the same regexp as generic IDs, but distinguished in the # t_ID() function. The PLY documentation suggests this approach. reserved = ( 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT', 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS', 'OUTPUT', 'SIGNED', 'TEMPLATE' ) # List of tokens. The lex module requires this. tokens = reserved + ( # identifier 'ID', # integer literal 'INTLIT', # string literal 'STRLIT', # code literal 'CODELIT', # ( ) [ ] { } < > , ; : :: * 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'LESS', 'GREATER', 'EQUALS', 'COMMA', 'SEMI', 'COLON', 'DBLCOLON', 'ASTERISK', # C preprocessor directives 'CPPDIRECTIVE' # The following are matched but never returned. commented out to # suppress PLY warning # newfile directive # 'NEWFILE', # endfile directive # 'ENDFILE' ) # Regular expressions for token matching t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACKET = r'\[' t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_LESS = r'\<' t_GREATER = r'\>' t_EQUALS = r'=' t_COMMA = r',' t_SEMI = r';' t_COLON = r':' t_DBLCOLON = r'::' t_ASTERISK = r'\*' # Identifiers and reserved words reserved_map = { } for r in reserved: reserved_map[r.lower()] = r def t_ID(t): r'[A-Za-z_]\w*' t.type = reserved_map.get(t.value,'ID') return t # Integer literal def t_INTLIT(t): r'(0x[\da-fA-F]+)|\d+' try: t.value = int(t.value,0) except ValueError: error(t.lineno, 'Integer value "%s" too large' % t.value) t.value = 0 return t # String literal. Note that these use only single quotes, and # can span multiple lines. def t_STRLIT(t): r"(?m)'([^'])+'" # strip off quotes t.value = t.value[1:-1] t.lineno += t.value.count('\n') return t # "Code literal"... like a string literal, but delimiters are # '{{' and '}}' so they get formatted nicely under emacs c-mode def t_CODELIT(t): r"(?m)\{\{([^\}]|}(?!\}))+\}\}" # strip off {{ & }} t.value = t.value[2:-2] t.lineno += t.value.count('\n') return t def t_CPPDIRECTIVE(t): r'^\#[^\#].*\n' t.lineno += t.value.count('\n') return t def t_NEWFILE(t): r'^\#\#newfile\s+"[\w/.-]*"' fileNameStack.push((t.value[11:-1], t.lineno)) t.lineno = 0 def t_ENDFILE(t): r'^\#\#endfile' (old_filename, t.lineno) = fileNameStack.pop() # # The functions t_NEWLINE, t_ignore, and t_error are # special for the lex module. # # Newlines def t_NEWLINE(t): r'\n+' t.lineno += t.value.count('\n') # Comments def t_comment(t): r'//.*' # Completely ignored characters t_ignore = ' \t\x0c' # Error handler def t_error(t): error(t.lineno, "illegal character '%s'" % t.value[0]) t.skip(1) # Build the lexer lex.lex() ##################################################################### # # Parser # # Every function whose name starts with 'p_' defines a grammar rule. # The rule is encoded in the function's doc string, while the # function body provides the action taken when the rule is matched. # The argument to each function is a list of the values of the # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols # on the RHS. For tokens, the value is copied from the t.value # attribute provided by the lexer. For non-terminals, the value # is assigned by the producing rule; i.e., the job of the grammar # rule function is to set the value for the non-terminal on the LHS # (by assigning to t[0]). ##################################################################### # The LHS of the first grammar rule is used as the start symbol # (in this case, 'specification'). Note that this rule enforces # that there will be exactly one namespace declaration, with 0 or more # global defs/decls before and after it. The defs & decls before # the namespace decl will be outside the namespace; those after # will be inside. The decoder function is always inside the namespace. def p_specification(t): 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block' global_code = t[1] isa_name = t[2] namespace = isa_name + "Inst" # wrap the decode block as a function definition t[4].wrap_decode_block(''' StaticInstPtr %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst) { using namespace %(namespace)s; ''' % vars(), '}') # both the latter output blocks and the decode block are in the namespace namespace_code = t[3] + t[4] # pass it all back to the caller of yacc.parse() t[0] = (isa_name, namespace, global_code, namespace_code) # ISA name declaration looks like "namespace ;" def p_name_decl(t): 'name_decl : NAMESPACE ID SEMI' t[0] = t[2] # 'opt_defs_and_outputs' is a possibly empty sequence of # def and/or output statements. def p_opt_defs_and_outputs_0(t): 'opt_defs_and_outputs : empty' t[0] = GenCode() def p_opt_defs_and_outputs_1(t): 'opt_defs_and_outputs : defs_and_outputs' t[0] = t[1] def p_defs_and_outputs_0(t): 'defs_and_outputs : def_or_output' t[0] = t[1] def p_defs_and_outputs_1(t): 'defs_and_outputs : defs_and_outputs def_or_output' t[0] = t[1] + t[2] # The list of possible definition/output statements. def p_def_or_output(t): '''def_or_output : def_format | def_bitfield | def_template | def_operand_types | def_operands | output_header | output_decoder | output_exec | global_let''' t[0] = t[1] # Output blocks 'output {{...}}' (C++ code blocks) are copied # directly to the appropriate output section. # Protect any non-dict-substitution '%'s in a format string # (i.e. those not followed by '(') def protect_non_subst_percents(s): return re.sub(r'%(?!\()', '%%', s) # Massage output block by substituting in template definitions and bit # operators. We handle '%'s embedded in the string that don't # indicate template substitutions (or CPU-specific symbols, which get # handled in GenCode) by doubling them first so that the format # operation will reduce them back to single '%'s. def process_output(s): s = protect_non_subst_percents(s) # protects cpu-specific symbols too s = protect_cpu_symbols(s) return substBitOps(s % templateMap) def p_output_header(t): 'output_header : OUTPUT HEADER CODELIT SEMI' t[0] = GenCode(header_output = process_output(t[3])) def p_output_decoder(t): 'output_decoder : OUTPUT DECODER CODELIT SEMI' t[0] = GenCode(decoder_output = process_output(t[3])) def p_output_exec(t): 'output_exec : OUTPUT EXEC CODELIT SEMI' t[0] = GenCode(exec_output = process_output(t[3])) # global let blocks 'let {{...}}' (Python code blocks) are executed # directly when seen. Note that these execute in a special variable # context 'exportContext' to prevent the code from polluting this # script's namespace. def p_global_let(t): 'global_let : LET CODELIT SEMI' updateExportContext() try: exec fixPythonIndentation(t[2]) in exportContext except Exception, exc: error(t.lineno(1), 'error: %s in global let block "%s".' % (exc, t[2])) t[0] = GenCode() # contributes nothing to the output C++ file # Define the mapping from operand type extensions to C++ types and bit # widths (stored in operandTypeMap). def p_def_operand_types(t): 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' try: userDict = eval('{' + t[3] + '}') except Exception, exc: error(t.lineno(1), 'error: %s in def operand_types block "%s".' % (exc, t[3])) buildOperandTypeMap(userDict, t.lineno(1)) t[0] = GenCode() # contributes nothing to the output C++ file # Define the mapping from operand names to operand classes and other # traits. Stored in operandNameMap. def p_def_operands(t): 'def_operands : DEF OPERANDS CODELIT SEMI' if not globals().has_key('operandTypeMap'): error(t.lineno(1), 'error: operand types must be defined before operands') try: userDict = eval('{' + t[3] + '}') except Exception, exc: error(t.lineno(1), 'error: %s in def operands block "%s".' % (exc, t[3])) buildOperandNameMap(userDict, t.lineno(1)) t[0] = GenCode() # contributes nothing to the output C++ file # A bitfield definition looks like: # 'def [signed] bitfield [:]' # This generates a preprocessor macro in the output file. def p_def_bitfield_0(t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) t[0] = GenCode(header_output = hash_define) # alternate form for single bit: 'def [signed] bitfield []' def p_def_bitfield_1(t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) t[0] = GenCode(header_output = hash_define) def p_opt_signed_0(t): 'opt_signed : SIGNED' t[0] = t[1] def p_opt_signed_1(t): 'opt_signed : empty' t[0] = '' # Global map variable to hold templates templateMap = {} def p_def_template(t): 'def_template : DEF TEMPLATE ID CODELIT SEMI' templateMap[t[3]] = Template(t[4]) t[0] = GenCode() # An instruction format definition looks like # "def format () {{...}};" def p_def_format(t): 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' (id, params, code) = (t[3], t[5], t[7]) defFormat(id, params, code, t.lineno(1)) t[0] = GenCode() # The formal parameter list for an instruction format is a possibly # empty list of comma-separated parameters. Positional (standard, # non-keyword) parameters must come first, followed by keyword # parameters, followed by a '*foo' parameter that gets excess # positional arguments (as in Python). Each of these three parameter # categories is optional. # # Note that we do not support the '**foo' parameter for collecting # otherwise undefined keyword args. Otherwise the parameter list is # (I believe) identical to what is supported in Python. # # The param list generates a tuple, where the first element is a list of # the positional params and the second element is a dict containing the # keyword params. def p_param_list_0(t): 'param_list : positional_param_list COMMA nonpositional_param_list' t[0] = t[1] + t[3] def p_param_list_1(t): '''param_list : positional_param_list | nonpositional_param_list''' t[0] = t[1] def p_positional_param_list_0(t): 'positional_param_list : empty' t[0] = [] def p_positional_param_list_1(t): 'positional_param_list : ID' t[0] = [t[1]] def p_positional_param_list_2(t): 'positional_param_list : positional_param_list COMMA ID' t[0] = t[1] + [t[3]] def p_nonpositional_param_list_0(t): 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' t[0] = t[1] + t[3] def p_nonpositional_param_list_1(t): '''nonpositional_param_list : keyword_param_list | excess_args_param''' t[0] = t[1] def p_keyword_param_list_0(t): 'keyword_param_list : keyword_param' t[0] = [t[1]] def p_keyword_param_list_1(t): 'keyword_param_list : keyword_param_list COMMA keyword_param' t[0] = t[1] + [t[3]] def p_keyword_param(t): 'keyword_param : ID EQUALS expr' t[0] = t[1] + ' = ' + t[3].__repr__() def p_excess_args_param(t): 'excess_args_param : ASTERISK ID' # Just concatenate them: '*ID'. Wrap in list to be consistent # with positional_param_list and keyword_param_list. t[0] = [t[1] + t[2]] # End of format definition-related rules. ############## # # A decode block looks like: # decode [, ]* [default ] { ... } # def p_decode_block(t): 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' default_defaults = defaultStack.pop() codeObj = t[5] # use the "default defaults" only if there was no explicit # default statement in decode_stmt_list if not codeObj.has_decode_default: codeObj += default_defaults codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') t[0] = codeObj # The opt_default statement serves only to push the "default defaults" # onto defaultStack. This value will be used by nested decode blocks, # and used and popped off when the current decode_block is processed # (in p_decode_block() above). def p_opt_default_0(t): 'opt_default : empty' # no default specified: reuse the one currently at the top of the stack defaultStack.push(defaultStack.top()) # no meaningful value returned t[0] = None def p_opt_default_1(t): 'opt_default : DEFAULT inst' # push the new default codeObj = t[2] codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') defaultStack.push(codeObj) # no meaningful value returned t[0] = None def p_decode_stmt_list_0(t): 'decode_stmt_list : decode_stmt' t[0] = t[1] def p_decode_stmt_list_1(t): 'decode_stmt_list : decode_stmt decode_stmt_list' if (t[1].has_decode_default and t[2].has_decode_default): error(t.lineno(1), 'Two default cases in decode block') t[0] = t[1] + t[2] # # Decode statement rules # # There are four types of statements allowed in a decode block: # 1. Format blocks 'format { ... }' # 2. Nested decode blocks # 3. Instruction definitions. # 4. C preprocessor directives. # Preprocessor directives found in a decode statement list are passed # through to the output, replicated to all of the output code # streams. This works well for ifdefs, so we can ifdef out both the # declarations and the decode cases generated by an instruction # definition. Handling them as part of the grammar makes it easy to # keep them in the right place with respect to the code generated by # the other statements. def p_decode_stmt_cpp(t): 'decode_stmt : CPPDIRECTIVE' t[0] = GenCode(t[1], t[1], t[1], t[1]) # A format block 'format { ... }' sets the default instruction # format used to handle instruction definitions inside the block. # This format can be overridden by using an explicit format on the # instruction definition or with a nested format block. def p_decode_stmt_format(t): 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' # The format will be pushed on the stack when 'push_format_id' is # processed (see below). Once the parser has recognized the full # production (though the right brace), we're done with the format, # so now we can pop it. formatStack.pop() t[0] = t[4] # This rule exists so we can set the current format (& push the stack) # when we recognize the format name part of the format block. def p_push_format_id(t): 'push_format_id : ID' try: formatStack.push(formatMap[t[1]]) t[0] = ('', '// format %s' % t[1]) except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) # Nested decode block: if the value of the current field matches the # specified constant, do a nested decode on some other field. def p_decode_stmt_decode(t): 'decode_stmt : case_label COLON decode_block' label = t[1] codeObj = t[3] # just wrap the decoding code from the block as a case in the # outer switch statement. codeObj.wrap_decode_block('\n%s:\n' % label) codeObj.has_decode_default = (label == 'default') t[0] = codeObj # Instruction definition (finally!). def p_decode_stmt_inst(t): 'decode_stmt : case_label COLON inst SEMI' label = t[1] codeObj = t[3] codeObj.wrap_decode_block('\n%s:' % label, 'break;\n') codeObj.has_decode_default = (label == 'default') t[0] = codeObj # The case label is either a list of one or more constants or 'default' def p_case_label_0(t): 'case_label : intlit_list' t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1])) def p_case_label_1(t): 'case_label : DEFAULT' t[0] = 'default' # # The constant list for a decode case label must be non-empty, but may have # one or more comma-separated integer literals in it. # def p_intlit_list_0(t): 'intlit_list : INTLIT' t[0] = [t[1]] def p_intlit_list_1(t): 'intlit_list : intlit_list COMMA INTLIT' t[0] = t[1] t[0].append(t[3]) # Define an instruction using the current instruction format (specified # by an enclosing format block). # "()" def p_inst_0(t): 'inst : ID LPAREN arg_list RPAREN' # Pass the ID and arg list to the current format class to deal with. currentFormat = formatStack.top() codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1)) args = ','.join(map(str, t[3])) args = re.sub('(?m)^', '//', args) args = re.sub('^//', '', args) comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) codeObj.prepend_all(comment) t[0] = codeObj # Define an instruction using an explicitly specified format: # "::()" def p_inst_1(t): 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' try: format = formatMap[t[1]] except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) codeObj = format.defineInst(t[3], t[5], t.lineno(1)) comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) codeObj.prepend_all(comment) t[0] = codeObj # The arg list generates a tuple, where the first element is a list of # the positional args and the second element is a dict containing the # keyword args. def p_arg_list_0(t): 'arg_list : positional_arg_list COMMA keyword_arg_list' t[0] = ( t[1], t[3] ) def p_arg_list_1(t): 'arg_list : positional_arg_list' t[0] = ( t[1], {} ) def p_arg_list_2(t): 'arg_list : keyword_arg_list' t[0] = ( [], t[1] ) def p_positional_arg_list_0(t): 'positional_arg_list : empty' t[0] = [] def p_positional_arg_list_1(t): 'positional_arg_list : expr' t[0] = [t[1]] def p_positional_arg_list_2(t): 'positional_arg_list : positional_arg_list COMMA expr' t[0] = t[1] + [t[3]] def p_keyword_arg_list_0(t): 'keyword_arg_list : keyword_arg' t[0] = t[1] def p_keyword_arg_list_1(t): 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' t[0] = t[1] t[0].update(t[3]) def p_keyword_arg(t): 'keyword_arg : ID EQUALS expr' t[0] = { t[1] : t[3] } # # Basic expressions. These constitute the argument values of # "function calls" (i.e. instruction definitions in the decode block) # and default values for formal parameters of format functions. # # Right now, these are either strings, integers, or (recursively) # lists of exprs (using Python square-bracket list syntax). Note that # bare identifiers are trated as string constants here (since there # isn't really a variable namespace to refer to). # def p_expr_0(t): '''expr : ID | INTLIT | STRLIT | CODELIT''' t[0] = t[1] def p_expr_1(t): '''expr : LBRACKET list_expr RBRACKET''' t[0] = t[2] def p_list_expr_0(t): 'list_expr : expr' t[0] = [t[1]] def p_list_expr_1(t): 'list_expr : list_expr COMMA expr' t[0] = t[1] + [t[3]] def p_list_expr_2(t): 'list_expr : empty' t[0] = [] # # Empty production... use in other rules for readability. # def p_empty(t): 'empty :' pass # Parse error handler. Note that the argument here is the offending # *token*, not a grammar symbol (hence the need to use t.value) def p_error(t): if t: error(t.lineno, "syntax error at '%s'" % t.value) else: error(0, "unknown syntax error", True) # END OF GRAMMAR RULES # # Now build the parser. yacc.yacc() ##################################################################### # # Support Classes # ##################################################################### # Expand template with CPU-specific references into a dictionary with # an entry for each CPU model name. The entry key is the model name # and the corresponding value is the template with the CPU-specific # refs substituted for that model. def expand_cpu_symbols_to_dict(template): # Protect '%'s that don't go with CPU-specific terms t = re.sub(r'%(?!\(CPU_)', '%%', template) result = {} for cpu in cpu_models: result[cpu.name] = t % cpu.strings return result # *If* the template has CPU-specific references, return a single # string containing a copy of the template for each CPU model with the # corresponding values substituted in. If the template has no # CPU-specific references, it is returned unmodified. def expand_cpu_symbols_to_string(template): if template.find('%(CPU_') != -1: return reduce(lambda x,y: x+y, expand_cpu_symbols_to_dict(template).values()) else: return template # Protect CPU-specific references by doubling the corresponding '%'s # (in preparation for substituting a different set of references into # the template). def protect_cpu_symbols(template): return re.sub(r'%(?=\(CPU_)', '%%', template) ############### # GenCode class # # The GenCode class encapsulates generated code destined for various # output files. The header_output and decoder_output attributes are # strings containing code destined for decoder.hh and decoder.cc # respectively. The decode_block attribute contains code to be # incorporated in the decode function itself (that will also end up in # decoder.cc). The exec_output attribute is a dictionary with a key # for each CPU model name; the value associated with a particular key # is the string of code for that CPU model's exec.cc file. The # has_decode_default attribute is used in the decode block to allow # explicit default clauses to override default default clauses. class GenCode: # Constructor. At this point we substitute out all CPU-specific # symbols. For the exec output, these go into the per-model # dictionary. For all other output types they get collapsed into # a single string. def __init__(self, header_output = '', decoder_output = '', exec_output = '', decode_block = '', has_decode_default = False): self.header_output = expand_cpu_symbols_to_string(header_output) self.decoder_output = expand_cpu_symbols_to_string(decoder_output) if isinstance(exec_output, dict): self.exec_output = exec_output elif isinstance(exec_output, str): # If the exec_output arg is a single string, we replicate # it for each of the CPU models, substituting and # %(CPU_foo)s params appropriately. self.exec_output = expand_cpu_symbols_to_dict(exec_output) self.decode_block = expand_cpu_symbols_to_string(decode_block) self.has_decode_default = has_decode_default # Override '+' operator: generate a new GenCode object that # concatenates all the individual strings in the operands. def __add__(self, other): exec_output = {} for cpu in cpu_models: n = cpu.name exec_output[n] = self.exec_output[n] + other.exec_output[n] return GenCode(self.header_output + other.header_output, self.decoder_output + other.decoder_output, exec_output, self.decode_block + other.decode_block, self.has_decode_default or other.has_decode_default) # Prepend a string (typically a comment) to all the strings. def prepend_all(self, pre): self.header_output = pre + self.header_output self.decoder_output = pre + self.decoder_output self.decode_block = pre + self.decode_block for cpu in cpu_models: self.exec_output[cpu.name] = pre + self.exec_output[cpu.name] # Wrap the decode block in a pair of strings (e.g., 'case foo:' # and 'break;'). Used to build the big nested switch statement. def wrap_decode_block(self, pre, post = ''): self.decode_block = pre + indent(self.decode_block) + post ################ # Format object. # # A format object encapsulates an instruction format. It must provide # a defineInst() method that generates the code for an instruction # definition. exportContextSymbols = ('InstObjParams', 'CodeBlock', 'makeList', 're', 'string') exportContext = {} def updateExportContext(): exportContext.update(exportDict(*exportContextSymbols)) exportContext.update(templateMap) def exportDict(*symNames): return dict([(s, eval(s)) for s in symNames]) class Format: def __init__(self, id, params, code): # constructor: just save away arguments self.id = id self.params = params label = 'def format ' + id self.user_code = compile(fixPythonIndentation(code), label, 'exec') param_list = string.join(params, ", ") f = '''def defInst(_code, _context, %s): my_locals = vars().copy() exec _code in _context, my_locals return my_locals\n''' % param_list c = compile(f, label + ' wrapper', 'exec') exec c self.func = defInst def defineInst(self, name, args, lineno): context = {} updateExportContext() context.update(exportContext) context.update({ 'name': name, 'Name': string.capitalize(name) }) try: vars = self.func(self.user_code, context, *args[0], **args[1]) except Exception, exc: error(lineno, 'error defining "%s": %s.' % (name, exc)) for k in vars.keys(): if k not in ('header_output', 'decoder_output', 'exec_output', 'decode_block'): del vars[k] return GenCode(**vars) # Special null format to catch an implicit-format instruction # definition outside of any format block. class NoFormat: def __init__(self): self.defaultInst = '' def defineInst(self, name, args, lineno): error(lineno, 'instruction definition "%s" with no active format!' % name) # This dictionary maps format name strings to Format objects. formatMap = {} # Define a new format def defFormat(id, params, code, lineno): # make sure we haven't already defined this one if formatMap.get(id, None) != None: error(lineno, 'format %s redefined.' % id) # create new object and store in global map formatMap[id] = Format(id, params, code) ############## # Stack: a simple stack object. Used for both formats (formatStack) # and default cases (defaultStack). Simply wraps a list to give more # stack-like syntax and enable initialization with an argument list # (as opposed to an argument that's a list). class Stack(list): def __init__(self, *items): list.__init__(self, items) def push(self, item): self.append(item); def top(self): return self[-1] # The global format stack. formatStack = Stack(NoFormat()) # The global default case stack. defaultStack = Stack( None ) # Global stack that tracks current file and line number. # Each element is a tuple (filename, lineno) that records the # *current* filename and the line number in the *previous* file where # it was included. fileNameStack = Stack() ################### # Utility functions # # Indent every line in string 's' by two spaces # (except preprocessor directives). # Used to make nested code blocks look pretty. # def indent(s): return re.sub(r'(?m)^(?!#)', ' ', s) # # Munge a somewhat arbitrarily formatted piece of Python code # (e.g. from a format 'let' block) into something whose indentation # will get by the Python parser. # # The two keys here are that Python will give a syntax error if # there's any whitespace at the beginning of the first line, and that # all lines at the same lexical nesting level must have identical # indentation. Unfortunately the way code literals work, an entire # let block tends to have some initial indentation. Rather than # trying to figure out what that is and strip it off, we prepend 'if # 1:' to make the let code the nested block inside the if (and have # the parser automatically deal with the indentation for us). # # We don't want to do this if (1) the code block is empty or (2) the # first line of the block doesn't have any whitespace at the front. def fixPythonIndentation(s): # get rid of blank lines first s = re.sub(r'(?m)^\s*\n', '', s); if (s != '' and re.match(r'[ \t]', s[0])): s = 'if 1:\n' + s return s # Error handler. Just call exit. Output formatted to work under # Emacs compile-mode. Optional 'print_traceback' arg, if set to True, # prints a Python stack backtrace too (can be handy when trying to # debug the parser itself). def error(lineno, string, print_traceback = False): spaces = "" for (filename, line) in fileNameStack[0:-1]: print spaces + "In file included from " + filename + ":" spaces += " " # Print a Python stack backtrace if requested. if (print_traceback): traceback.print_exc() if lineno != 0: line_str = "%d:" % lineno else: line_str = "" sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string)) ##################################################################### # # Bitfield Operator Support # ##################################################################### bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>') bitOpWordRE = re.compile(r'(?') bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>') def substBitOps(code): # first convert single-bit selectors to two-index form # i.e., --> code = bitOp1ArgRE.sub(r'<\1:\1>', code) # simple case: selector applied to ID (name) # i.e., foo --> bits(foo, a, b) code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code) # if selector is applied to expression (ending in ')'), # we need to search backward for matching '(' match = bitOpExprRE.search(code) while match: exprEnd = match.start() here = exprEnd - 1 nestLevel = 1 while nestLevel > 0: if code[here] == '(': nestLevel -= 1 elif code[here] == ')': nestLevel += 1 here -= 1 if here < 0: sys.exit("Didn't find '('!") exprStart = here+1 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1], match.group(1), match.group(2)) code = code[:exprStart] + newExpr + code[match.end():] match = bitOpExprRE.search(code) return code #################### # Template objects. # # Template objects are format strings that allow substitution from # the attribute spaces of other objects (e.g. InstObjParams instances). class Template: def __init__(self, t): self.template = t def subst(self, d): # Start with the template namespace. Make a copy since we're # going to modify it. myDict = templateMap.copy() # if the argument is a dictionary, we just use it. if isinstance(d, dict): myDict.update(d) # if the argument is an object, we use its attribute map. elif hasattr(d, '__dict__'): myDict.update(d.__dict__) else: raise TypeError, "Template.subst() arg must be or have dictionary" # Protect non-Python-dict substitutions (e.g. if there's a printf # in the templated C++ code) template = protect_non_subst_percents(self.template) # CPU-model-specific substitutions are handled later (in GenCode). template = protect_cpu_symbols(template) return template % myDict # Convert to string. This handles the case when a template with a # CPU-specific term gets interpolated into another template or into # an output block. def __str__(self): return expand_cpu_symbols_to_string(self.template) ##################################################################### # # Code Parser # # The remaining code is the support for automatically extracting # instruction characteristics from pseudocode. # ##################################################################### # Force the argument to be a list. Useful for flags, where a caller # can specify a singleton flag or a list of flags. Also usful for # converting tuples to lists so they can be modified. def makeList(arg): if isinstance(arg, list): return arg elif isinstance(arg, tuple): return list(arg) elif not arg: return [] else: return [ arg ] # Generate operandTypeMap from the user's 'def operand_types' # statement. def buildOperandTypeMap(userDict, lineno): global operandTypeMap operandTypeMap = {} for (ext, (desc, size)) in userDict.iteritems(): if desc == 'signed int': ctype = 'int%d_t' % size is_signed = 1 elif desc == 'unsigned int': ctype = 'uint%d_t' % size is_signed = 0 elif desc == 'float': is_signed = 1 # shouldn't really matter if size == 32: ctype = 'float' elif size == 64: ctype = 'double' if ctype == '': error(lineno, 'Unrecognized type description "%s" in userDict') operandTypeMap[ext] = (size, ctype, is_signed) # # # # Base class for operand descriptors. An instance of this class (or # actually a class derived from this one) represents a specific # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate # derived classes encapsulates the traits of a particular operand type # (e.g., "32-bit integer register"). # class Operand(object): def __init__(self, full_name, ext, is_src, is_dest): self.full_name = full_name self.ext = ext self.is_src = is_src self.is_dest = is_dest # The 'effective extension' (eff_ext) is either the actual # extension, if one was explicitly provided, or the default. if ext: self.eff_ext = ext else: self.eff_ext = self.dflt_ext (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext] # note that mem_acc_size is undefined for non-mem operands... # template must be careful not to use it if it doesn't apply. if self.isMem(): self.mem_acc_size = self.makeAccSize() self.mem_acc_type = self.ctype # Finalize additional fields (primarily code fields). This step # is done separately since some of these fields may depend on the # register index enumeration that hasn't been performed yet at the # time of __init__(). def finalize(self): self.flags = self.getFlags() self.constructor = self.makeConstructor() self.op_decl = self.makeDecl() if self.is_src: self.op_rd = self.makeRead() self.op_src_decl = self.makeDecl() else: self.op_rd = '' self.op_src_decl = '' if self.is_dest: self.op_wb = self.makeWrite() self.op_dest_decl = self.makeDecl() else: self.op_wb = '' self.op_dest_decl = '' def isMem(self): return 0 def isReg(self): return 0 def isFloatReg(self): return 0 def isIntReg(self): return 0 def isControlReg(self): return 0 def getFlags(self): # note the empty slice '[:]' gives us a copy of self.flags[0] # instead of a reference to it my_flags = self.flags[0][:] if self.is_src: my_flags += self.flags[1] if self.is_dest: my_flags += self.flags[2] return my_flags def makeDecl(self): # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. return self.ctype + ' ' + self.base_name + ' = 0;\n'; class IntRegOperand(Operand): def isReg(self): return 1 def isIntReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): if (self.ctype == 'float' or self.ctype == 'double'): error(0, 'Attempt to read integer register as FP') if (self.size == self.dflt_size): return '%s = xc->readIntReg(this, %d);\n' % \ (self.base_name, self.src_reg_idx) else: return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \ (self.base_name, self.src_reg_idx, self.size-1) def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): error(0, 'Attempt to write integer register as FP') if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) else: final_val = self.base_name wb = ''' { %s final_val = %s; xc->setIntReg(this, %d, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (self.dflt_ctype, final_val, self.dest_reg_idx) return wb class FloatRegOperand(Operand): def isReg(self): return 1 def isFloatReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): bit_select = 0 width = 0; if (self.ctype == 'float'): func = 'readFloatReg' width = 32; elif (self.ctype == 'double'): func = 'readFloatReg' width = 64; else: func = 'readFloatRegBits' if (self.ctype == 'uint32_t'): width = 32; elif (self.ctype == 'uint64_t'): width = 64; if (self.size != self.dflt_size): bit_select = 1 if width: base = 'xc->%s(this, %d, %d)' % \ (func, self.src_reg_idx, width) else: base = 'xc->%s(this, %d)' % \ (func, self.src_reg_idx) if bit_select: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, base, self.size-1) else: return '%s = %s;\n' % (self.base_name, base) def makeWrite(self): final_val = self.base_name final_ctype = self.ctype widthSpecifier = '' width = 0 if (self.ctype == 'float'): width = 32 func = 'setFloatReg' elif (self.ctype == 'double'): width = 64 func = 'setFloatReg' elif (self.ctype == 'uint32_t'): func = 'setFloatRegBits' width = 32 elif (self.ctype == 'uint64_t'): func = 'setFloatRegBits' width = 64 else: func = 'setFloatRegBits' final_ctype = 'uint%d_t' % self.dflt_size if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) if width: widthSpecifier = ', %d' % width wb = ''' { %s final_val = %s; xc->%s(this, %d, final_val%s);\n if (traceData) { traceData->setData(final_val); } }''' % (final_ctype, final_val, func, self.dest_reg_idx, widthSpecifier) return wb class ControlRegOperand(Operand): def isReg(self): return 1 def isControlReg(self): return 1 def makeConstructor(self): c = '' if self.is_src: c += '\n\t_srcRegIdx[%d] = %s;' % \ (self.src_reg_idx, self.reg_spec) if self.is_dest: c += '\n\t_destRegIdx[%d] = %s;' % \ (self.dest_reg_idx, self.reg_spec) return c def makeRead(self): bit_select = 0 if (self.ctype == 'float' or self.ctype == 'double'): error(0, 'Attempt to read control register as FP') base = 'xc->readMiscReg(%s)' % self.reg_spec if self.size == self.dflt_size: return '%s = %s;\n' % (self.base_name, base) else: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, base, self.size-1) def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): error(0, 'Attempt to write control register as FP') wb = 'xc->setMiscReg(%s, %s);\n' % (self.reg_spec, self.base_name) wb += 'if (traceData) { traceData->setData(%s); }' % \ self.base_name return wb class MemOperand(Operand): def isMem(self): return 1 def makeConstructor(self): return '' def makeDecl(self): # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. # Declare memory data variable. c = '%s %s = 0;\n' % (self.ctype, self.base_name) return c def makeRead(self): return '' def makeWrite(self): return '' # Return the memory access size *in bits*, suitable for # forming a type via "uint%d_t". Divide by 8 if you want bytes. def makeAccSize(self): return self.size class NPCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): return '%s = xc->readNextPC();\n' % self.base_name def makeWrite(self): return 'xc->setNextPC(%s);\n' % self.base_name class NNPCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): return '%s = xc->readNextNPC();\n' % self.base_name def makeWrite(self): return 'xc->setNextNPC(%s);\n' % self.base_name def buildOperandNameMap(userDict, lineno): global operandNameMap operandNameMap = {} for (op_name, val) in userDict.iteritems(): (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext] # Canonical flag structure is a triple of lists, where each list # indicates the set of flags implied by this operand always, when # used as a source, and when used as a dest, respectively. # For simplicity this can be initialized using a variety of fairly # obvious shortcuts; we convert these to canonical form here. if not flags: # no flags specified (e.g., 'None') flags = ( [], [], [] ) elif isinstance(flags, str): # a single flag: assumed to be unconditional flags = ( [ flags ], [], [] ) elif isinstance(flags, list): # a list of flags: also assumed to be unconditional flags = ( flags, [], [] ) elif isinstance(flags, tuple): # it's a tuple: it should be a triple, # but each item could be a single string or a list (uncond_flags, src_flags, dest_flags) = flags flags = (makeList(uncond_flags), makeList(src_flags), makeList(dest_flags)) # Accumulate attributes of new operand class in tmp_dict tmp_dict = {} for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri', 'dflt_size', 'dflt_ctype', 'dflt_is_signed'): tmp_dict[attr] = eval(attr) tmp_dict['base_name'] = op_name # New class name will be e.g. "IntReg_Ra" cls_name = base_cls_name + '_' + op_name # Evaluate string arg to get class object. Note that the # actual base class for "IntReg" is "IntRegOperand", i.e. we # have to append "Operand". try: base_cls = eval(base_cls_name + 'Operand') except NameError: error(lineno, 'error: unknown operand base class "%s"' % base_cls_name) # The following statement creates a new class called # as a subclass of with the attributes # in tmp_dict, just as if we evaluated a class declaration. operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict) # Define operand variables. operands = userDict.keys() operandsREString = (r''' (?[\w/.-]*)".*$', re.MULTILINE) # Function to replace a matched '##include' directive with the # contents of the specified file (with nested ##includes replaced # recursively). 'matchobj' is an re match object (from a match of # includeRE) and 'dirname' is the directory relative to which the file # path should be resolved. def replace_include(matchobj, dirname): fname = matchobj.group('filename') full_fname = os.path.normpath(os.path.join(dirname, fname)) contents = '##newfile "%s"\n%s\n##endfile\n' % \ (full_fname, read_and_flatten(full_fname)) return contents # Read a file and recursively flatten nested '##include' files. def read_and_flatten(filename): current_dir = os.path.dirname(filename) try: contents = open(filename).read() except IOError: error(0, 'Error including file "%s"' % filename) fileNameStack.push((filename, 0)) # Find any includes and include them contents = includeRE.sub(lambda m: replace_include(m, current_dir), contents) fileNameStack.pop() return contents # # Read in and parse the ISA description. # def parse_isa_desc(isa_desc_file, output_dir): # Read file and (recursively) all included files into a string. # PLY requires that the input be in a single string so we have to # do this up front. isa_desc = read_and_flatten(isa_desc_file) # Initialize filename stack with outer file. fileNameStack.push((isa_desc_file, 0)) # Parse it. (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc) # grab the last three path components of isa_desc_file to put in # the output filename = '/'.join(isa_desc_file.split('/')[-3:]) # generate decoder.hh includes = '#include "base/bitfield.hh" // for bitfield support' global_output = global_code.header_output namespace_output = namespace_code.header_output decode_function = '' update_if_needed(output_dir + '/decoder.hh', file_template % vars()) # generate decoder.cc includes = '#include "decoder.hh"' global_output = global_code.decoder_output namespace_output = namespace_code.decoder_output # namespace_output += namespace_code.decode_block decode_function = namespace_code.decode_block update_if_needed(output_dir + '/decoder.cc', file_template % vars()) # generate per-cpu exec files for cpu in cpu_models: includes = '#include "decoder.hh"\n' includes += cpu.includes global_output = global_code.exec_output[cpu.name] namespace_output = namespace_code.exec_output[cpu.name] decode_function = '' update_if_needed(output_dir + '/' + cpu.filename, file_template % vars()) # global list of CpuModel objects (see cpu_models.py) cpu_models = [] # Called as script: get args from command line. # Args are: if __name__ == '__main__': execfile(sys.argv[1]) # read in CpuModel definitions cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]] parse_isa_desc(sys.argv[2], sys.argv[3])