/* * Copyright (c) 2017-2019 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Giacomo Gabrielli */ // TODO: add support for suffixes of register specifiers in disasm strings. #include "arch/arm/insts/sve.hh" namespace ArmISA { const char* svePredTypeToStr(SvePredType pt) { switch (pt) { case SvePredType::MERGE: return "m"; case SvePredType::ZERO: return "z"; default: return ""; } } std::string SvePredCountPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printIntReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, ", "); printVecPredReg(ss, op1); return ss.str(); } std::string SvePredCountOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); if (destIsVec) { printVecReg(ss, dest, true); } else { printIntReg(ss, dest); } ccprintf(ss, ", "); uint8_t opWidth = 64; printVecPredReg(ss, gp); ccprintf(ss, ", "); if (srcIs32b) opWidth = 32; printIntReg(ss, dest, opWidth); return ss.str(); } std::string SveIndexIIOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", #%d, #%d", imm1, imm2); return ss.str(); } std::string SveIndexIROp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", #%d, ", imm1); printIntReg(ss, op2); return ss.str(); } std::string SveIndexRIOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printIntReg(ss, op1); ccprintf(ss, ", #%d", imm2); return ss.str(); } std::string SveIndexRROp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printIntReg(ss, op1); ccprintf(ss, ", "); printIntReg(ss, op2); return ss.str(); } std::string SveWhileOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); uint8_t opWidth; if (srcIs32b) opWidth = 32; else opWidth = 64; printIntReg(ss, op1, opWidth); ccprintf(ss, ", "); printIntReg(ss, op2, opWidth); return ss.str(); } std::string SveCompTermOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printIntReg(ss, op1); ccprintf(ss, ", "); printIntReg(ss, op2); return ss.str(); } std::string SveUnaryPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/m, "); printVecReg(ss, op1, true); return ss.str(); } std::string SveUnaryUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); return ss.str(); } std::string SveUnaryWideImmUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveUnaryWideImmPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, (isMerging ? "/m" : "/z")); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveBinImmUnpredConstrOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, op1); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveBinImmPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/m, "); printVecReg(ss, dest, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveBinWideImmUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, dest, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveBinDestrPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/m, "); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveBinConstrPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); if (predType == SvePredType::MERGE || predType == SvePredType::ZERO) { ccprintf(ss, "/%s", svePredTypeToStr(predType)); } ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveBinUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveBinIdxUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); ccprintf(ss, "["); ss << (uint64_t)index; ccprintf(ss, "]"); return ss.str(); } std::string SvePredLogicalOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); if (isSel) { ccprintf(ss, ", "); } else { ccprintf(ss, "/z, "); } printVecPredReg(ss, op1); ccprintf(ss, ", "); printVecPredReg(ss, op2); return ss.str(); } std::string SvePredBinPermOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, op1); ccprintf(ss, ", "); printVecPredReg(ss, op2); return ss.str(); } std::string SveCmpOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/z, "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveCmpImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/z, "); printVecReg(ss, op1, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveTerPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/m, "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveTerImmUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveReducOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printFloatReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, ", "); printVecReg(ss, op1, true); return ss.str(); } std::string SveOrdReducOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printFloatReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, ", "); printFloatReg(ss, dest); ccprintf(ss, ", "); printVecReg(ss, op1, true); return ss.str(); } std::string SvePtrueOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); if (imm != 0x1f) { ccprintf(ss, ", "); ss << sveDisasmPredCountImm(imm); } return ss.str(); } std::string SveIntCmpOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/z, "); printVecReg(ss, op1, true); ccprintf(ss, ", "); if (op2IsWide) { printVecReg(ss, op2, true); } else { printVecReg(ss, op2, true); } return ss.str(); } std::string SveIntCmpImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, "/z, "); printVecPredReg(ss, gp); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveAdrOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", ["); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); if (offsetFormat == SveAdrOffsetUnpackedSigned) { ccprintf(ss, ", sxtw"); } else if (offsetFormat == SveAdrOffsetUnpackedUnsigned) { ccprintf(ss, ", uxtw"); } else if (mult != 1) { ccprintf(ss, ", lsl"); } if (mult != 1) { ss << __builtin_ctz(mult); } ccprintf(ss, "]"); return ss.str(); } std::string SveElemCountOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { static const char suffix[9] = {'\0', 'b', 'h', '\0', 'w', '\0', '\0', '\0', 'd'}; std::stringstream ss; ss << " " << mnemonic << suffix[esize] << " "; if (dstIsVec) { printVecReg(ss, dest, true); } else { if (dstIs32b) { printIntReg(ss, dest, 32); } else { printIntReg(ss, dest, 64); } } if (pattern != 0x1f) { ccprintf(ss, ", "); ss << sveDisasmPredCountImm(pattern); if (imm != 1) { ccprintf(ss, ", mul #"); ss << std::to_string(imm); } } return ss.str(); } std::string SvePartBrkOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, isMerging ? "/m, " : "/z, "); printVecPredReg(ss, op1); return ss.str(); } std::string SvePartBrkPropOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/z, "); printVecPredReg(ss, op1); ccprintf(ss, ", "); printVecPredReg(ss, op2); return ss.str(); } std::string SveSelectOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); if (scalar) printIntReg(ss, dest, scalar_width); else if (simdFp) printFloatReg(ss, dest); else printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecPredReg(ss, gp); if (conditional) { ccprintf(ss, ", "); if (scalar) printIntReg(ss, dest, scalar_width); else printVecReg(ss, dest, true); } ccprintf(ss, ", "); printVecReg(ss, op1, true); return ss.str(); } std::string SveUnaryPredPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, ", "); printVecPredReg(ss, op1); return ss.str(); } std::string SveTblOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", { "); printVecReg(ss, op1, true); ccprintf(ss, " }, "); printVecReg(ss, op2, true); return ss.str(); } std::string SveUnpackOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, op1); return ss.str(); } std::string SvePredTestOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, gp); ccprintf(ss, ", "); printVecPredReg(ss, op1); return ss.str(); } std::string SvePredUnaryWImplicitSrcOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); return ss.str(); } std::string SvePredUnaryWImplicitSrcPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/z, "); return ss.str(); } std::string SvePredUnaryWImplicitDstOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, op1); return ss.str(); } std::string SveWImplicitSrcDstOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); return ss.str(); } std::string SveBinImmUnpredDestrOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", #"); ss << imm; return ss.str(); } std::string SveBinImmIdxUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, "["); ss << imm; ccprintf(ss, "]"); return ss.str(); } std::string SveUnarySca2VecUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); if (simdFp) { printFloatReg(ss, op1); } else { printIntReg(ss, op1); } return ss.str(); } std::string SveDotProdIdxOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); ccprintf(ss, "["); ccprintf(ss, "%lu", imm); ccprintf(ss, "]"); return ss.str(); } std::string SveDotProdOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecReg(ss, dest, true); ccprintf(ss, ", "); printVecReg(ss, op1, true); ccprintf(ss, ", "); printVecReg(ss, op2, true); return ss.str(); } std::string SveComplexOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, gp); ccprintf(ss, "/m, "); printVecPredReg(ss, op1); ccprintf(ss, ", "); printVecPredReg(ss, op2); ccprintf(ss, ", #"); const char* rotstr[4] = {"0", "90", "180", "270"}; ccprintf(ss, rotstr[rot]); return ss.str(); } std::string SveComplexIdxOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; printMnemonic(ss, "", false); printVecPredReg(ss, dest); ccprintf(ss, ", "); printVecPredReg(ss, op1); ccprintf(ss, ", "); printVecPredReg(ss, op2); ccprintf(ss, "["); ss << imm; ccprintf(ss, "], #"); const char* rotstr[4] = {"0", "90", "180", "270"}; ccprintf(ss, rotstr[rot]); return ss.str(); } std::string sveDisasmPredCountImm(uint8_t imm) { switch (imm) { case 0x0: return "POW2"; case 0x1: case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: return "VL" + std::to_string(imm); case 0x8: case 0x9: case 0xa: case 0xb: case 0xc: case 0xd: return "VL" + std::to_string(1 << ((imm & 0x7) + 3)); case 0x1d: return "MUL4"; case 0x1e: return "MUL3"; case 0x1f: return "ALL"; default: return "#" + std::to_string(imm); } } unsigned int sveDecodePredCount(uint8_t imm, unsigned int num_elems) { assert(num_elems > 0); switch (imm) { case 0x0: // POW2 return 1 << (31 - __builtin_clz((uint32_t) num_elems)); case 0x1: case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: // VL1, VL2, VL3, VL4, VL5, VL6, VL7 return (num_elems >= imm) ? imm : 0; case 0x8: case 0x9: case 0xa: case 0xb: case 0xc: case 0xd: // VL8, VL16, VL32, VL64, VL128, VL256 { unsigned int pcount = 1 << ((imm & 0x7) + 3); return (num_elems >= pcount) ? pcount : 0; } case 0x1d: // MUL4 return num_elems - (num_elems % 4); case 0x1e: // MUL3 return num_elems - (num_elems % 3); case 0x1f: // ALL return num_elems; default: return 0; } } uint64_t sveExpandFpImmAddSub(uint8_t imm, uint8_t size) { static constexpr uint16_t fpOne16 = 0x3c00; static constexpr uint16_t fpPointFive16 = 0x3800; static constexpr uint32_t fpOne32 = 0x3f800000; static constexpr uint32_t fpPointFive32 = 0x3f000000; static constexpr uint64_t fpOne64 = 0x3ff0000000000000; static constexpr uint64_t fpPointFive64 = 0x3fe0000000000000; switch (size) { case 0x1: return imm ? fpOne16 : fpPointFive16; case 0x2: return imm ? fpOne32 : fpPointFive32; case 0x3: return imm ? fpOne64 : fpPointFive64; default: panic("Unsupported size"); } } uint64_t sveExpandFpImmMaxMin(uint8_t imm, uint8_t size) { static constexpr uint16_t fpOne16 = 0x3c00; static constexpr uint32_t fpOne32 = 0x3f800000; static constexpr uint64_t fpOne64 = 0x3ff0000000000000; switch (size) { case 0x1: return imm ? fpOne16 : 0x0; case 0x2: return imm ? fpOne32 : 0x0; case 0x3: return imm ? fpOne64 : 0x0; default: panic("Unsupported size"); } } uint64_t sveExpandFpImmMul(uint8_t imm, uint8_t size) { static constexpr uint16_t fpTwo16 = 0x4000; static constexpr uint16_t fpPointFive16 = 0x3800; static constexpr uint32_t fpTwo32 = 0x40000000; static constexpr uint32_t fpPointFive32 = 0x3f000000; static constexpr uint64_t fpTwo64 = 0x4000000000000000; static constexpr uint64_t fpPointFive64 = 0x3fe0000000000000; switch (size) { case 0x1: return imm ? fpTwo16 : fpPointFive16; case 0x2: return imm ? fpTwo32 : fpPointFive32; case 0x3: return imm ? fpTwo64 : fpPointFive64; default: panic("Unsupported size"); } } } // namespace ArmISA