/* * Copyright (c) 2001-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "base/inifile.hh" #include "base/str.hh" #include "base/trace.hh" #include "cpu/exec_context.hh" #include "sim/builder.hh" #include "targetarch/alpha_memory.hh" #include "targetarch/ev5.hh" using namespace std; /////////////////////////////////////////////////////////////////////// // // Alpha TLB // #ifdef DEBUG bool uncacheBit39 = false; bool uncacheBit40 = false; #endif AlphaTLB::AlphaTLB(const string &name, int s) : SimObject(name), size(s), nlu(0) { table = new AlphaISA::PTE[size]; memset(table, 0, sizeof(AlphaISA::PTE[size])); } AlphaTLB::~AlphaTLB() { if (table) delete [] table; } // look up an entry in the TLB AlphaISA::PTE * AlphaTLB::lookup(Addr vpn, uint8_t asn) const { DPRINTF(TLB, "lookup %#x\n", vpn); PageTable::const_iterator i = lookupTable.find(vpn); if (i == lookupTable.end()) return NULL; while (i->first == vpn) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); if (vpn == pte->tag && (pte->asma || pte->asn == asn)) return pte; ++i; } // not found... return NULL; } void AlphaTLB::checkCacheability(MemReqPtr &req) { // in Alpha, cacheability is controlled by upper-level bits of the // physical address /* * We support having the uncacheable bit in either bit 39 or bit 40. * The Turbolaser platform (and EV5) support having the bit in 39, but * Tsunami (which Linux assumes uses an EV6) generates accesses with * the bit in 40. So we must check for both, but we have debug flags * to catch a weird case where both are used, which shouldn't happen. */ #ifdef ALPHA_TLASER if (req->paddr & PA_UNCACHED_BIT_39) { #else if (req->paddr & PA_UNCACHED_BIT_43) { #endif // IPR memory space not implemented if (PA_IPR_SPACE(req->paddr)) { if (!req->xc->misspeculating()) { switch (req->paddr) { case ULL(0xFFFFF00188): req->data = 0; break; default: panic("IPR memory space not implemented! PA=%x\n", req->paddr); } } } else { // mark request as uncacheable req->flags |= UNCACHEABLE; #ifndef ALPHA_TLASER // Clear bits 42:35 of the physical address (10-2 in Tsunami manual) req->paddr &= PA_UNCACHED_MASK; #endif } } } // insert a new TLB entry void AlphaTLB::insert(Addr vaddr, AlphaISA::PTE &pte) { if (table[nlu].valid) { Addr oldvpn = table[nlu].tag; PageTable::iterator i = lookupTable.find(oldvpn); if (i == lookupTable.end()) panic("TLB entry not found in lookupTable"); int index; while ((index = i->second) != nlu) { if (table[index].tag != oldvpn) panic("TLB entry not found in lookupTable"); ++i; } DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn); lookupTable.erase(i); } Addr vpn = VA_VPN(vaddr); DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vpn, pte.ppn); table[nlu] = pte; table[nlu].tag = vpn; table[nlu].valid = true; lookupTable.insert(make_pair(vpn, nlu)); nextnlu(); } void AlphaTLB::flushAll() { memset(table, 0, sizeof(AlphaISA::PTE[size])); lookupTable.clear(); nlu = 0; } void AlphaTLB::flushProcesses() { PageTable::iterator i = lookupTable.begin(); PageTable::iterator end = lookupTable.end(); while (i != end) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); if (!pte->asma) { DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn); pte->valid = false; lookupTable.erase(i); } ++i; } } void AlphaTLB::flushAddr(Addr vaddr, uint8_t asn) { Addr vpn = VA_VPN(vaddr); PageTable::iterator i = lookupTable.find(vpn); if (i == lookupTable.end()) return; while (i->first == vpn) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); if (vpn == pte->tag && (pte->asma || pte->asn == asn)) { DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vpn, pte->ppn); // invalidate this entry pte->valid = false; lookupTable.erase(i); } ++i; } } void AlphaTLB::serialize(ostream &os) { SERIALIZE_SCALAR(size); SERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { nameOut(os, csprintf("%s.PTE%d", name(), i)); table[i].serialize(os); } } void AlphaTLB::unserialize(Checkpoint *cp, const string §ion) { UNSERIALIZE_SCALAR(size); UNSERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { table[i].unserialize(cp, csprintf("%s.PTE%d", section, i)); if (table[i].valid) { lookupTable.insert(make_pair(table[i].tag, i)); } } } /////////////////////////////////////////////////////////////////////// // // Alpha ITB // AlphaITB::AlphaITB(const std::string &name, int size) : AlphaTLB(name, size) {} void AlphaITB::regStats() { hits .name(name() + ".hits") .desc("ITB hits"); misses .name(name() + ".misses") .desc("ITB misses"); acv .name(name() + ".acv") .desc("ITB acv"); accesses .name(name() + ".accesses") .desc("ITB accesses"); accesses = hits + misses; } void AlphaITB::fault(Addr pc, ExecContext *xc) const { uint64_t *ipr = xc->regs.ipr; if (!xc->misspeculating()) { ipr[AlphaISA::IPR_ITB_TAG] = pc; ipr[AlphaISA::IPR_IFAULT_VA_FORM] = ipr[AlphaISA::IPR_IVPTBR] | (VA_VPN(pc) << 3); } } Fault AlphaITB::translate(MemReqPtr &req) const { InternalProcReg *ipr = req->xc->regs.ipr; if (PC_PAL(req->vaddr)) { // strip off PAL PC marker (lsb is 1) req->paddr = (req->vaddr & ~3) & PA_IMPL_MASK; hits++; return No_Fault; } if (req->flags & PHYSICAL) { req->paddr = req->vaddr; } else { // verify that this is a good virtual address if (!validVirtualAddress(req->vaddr)) { fault(req->vaddr, req->xc); acv++; return ITB_Acv_Fault; } // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5 // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6 #ifdef ALPHA_TLASER if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) && VA_SPACE_EV5(req->vaddr) == 2) { #else if (VA_SPACE_EV6(req->vaddr) == 0x7e) { #endif // only valid in kernel mode if (ICM_CM(ipr[AlphaISA::IPR_ICM]) != AlphaISA::mode_kernel) { fault(req->vaddr, req->xc); acv++; return ITB_Acv_Fault; } req->paddr = req->vaddr & PA_IMPL_MASK; #ifndef ALPHA_TLASER // sign extend the physical address properly if (req->paddr & PA_UNCACHED_BIT_40) req->paddr |= ULL(0xf0000000000); else req->paddr &= ULL(0xffffffffff); #endif } else { // not a physical address: need to look up pte AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr), DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN])); if (!pte) { fault(req->vaddr, req->xc); misses++; return ITB_Fault_Fault; } req->paddr = PA_PFN2PA(pte->ppn) + VA_POFS(req->vaddr & ~3); // check permissions for this access if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) { // instruction access fault fault(req->vaddr, req->xc); acv++; return ITB_Acv_Fault; } hits++; } } // check that the physical address is ok (catch bad physical addresses) if (req->paddr & ~PA_IMPL_MASK) return Machine_Check_Fault; checkCacheability(req); return No_Fault; } /////////////////////////////////////////////////////////////////////// // // Alpha DTB // AlphaDTB::AlphaDTB(const std::string &name, int size) : AlphaTLB(name, size) {} void AlphaDTB::regStats() { read_hits .name(name() + ".read_hits") .desc("DTB read hits") ; read_misses .name(name() + ".read_misses") .desc("DTB read misses") ; read_acv .name(name() + ".read_acv") .desc("DTB read access violations") ; read_accesses .name(name() + ".read_accesses") .desc("DTB read accesses") ; write_hits .name(name() + ".write_hits") .desc("DTB write hits") ; write_misses .name(name() + ".write_misses") .desc("DTB write misses") ; write_acv .name(name() + ".write_acv") .desc("DTB write access violations") ; write_accesses .name(name() + ".write_accesses") .desc("DTB write accesses") ; hits .name(name() + ".hits") .desc("DTB hits") ; misses .name(name() + ".misses") .desc("DTB misses") ; acv .name(name() + ".acv") .desc("DTB access violations") ; accesses .name(name() + ".accesses") .desc("DTB accesses") ; hits = read_hits + write_hits; misses = read_misses + write_misses; acv = read_acv + write_acv; accesses = read_accesses + write_accesses; } void AlphaDTB::fault(MemReqPtr &req, uint64_t flags) const { ExecContext *xc = req->xc; Addr vaddr = req->vaddr; uint64_t *ipr = xc->regs.ipr; // Set fault address and flags. Even though we're modeling an // EV5, we use the EV6 technique of not latching fault registers // on VPTE loads (instead of locking the registers until IPR_VA is // read, like the EV5). The EV6 approach is cleaner and seems to // work with EV5 PAL code, but not the other way around. if (!xc->misspeculating() && !(req->flags & VPTE) && !(req->flags & NO_FAULT)) { // set VA register with faulting address ipr[AlphaISA::IPR_VA] = vaddr; // set MM_STAT register flags ipr[AlphaISA::IPR_MM_STAT] = (((OPCODE(xc->getInst()) & 0x3f) << 11) | ((RA(xc->getInst()) & 0x1f) << 6) | (flags & 0x3f)); // set VA_FORM register with faulting formatted address ipr[AlphaISA::IPR_VA_FORM] = ipr[AlphaISA::IPR_MVPTBR] | (VA_VPN(vaddr) << 3); } } Fault AlphaDTB::translate(MemReqPtr &req, bool write) const { RegFile *regs = &req->xc->regs; Addr pc = regs->pc; InternalProcReg *ipr = regs->ipr; AlphaISA::mode_type mode = (AlphaISA::mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]); if (PC_PAL(pc)) { mode = (req->flags & ALTMODE) ? (AlphaISA::mode_type)ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE]) : AlphaISA::mode_kernel; } if (req->flags & PHYSICAL) { req->paddr = req->vaddr; } else { // verify that this is a good virtual address if (!validVirtualAddress(req->vaddr)) { fault(req, ((write ? MM_STAT_WR_MASK : 0) | MM_STAT_BAD_VA_MASK | MM_STAT_ACV_MASK)); if (write) { write_acv++; } else { read_acv++; } return DTB_Fault_Fault; } // Check for "superpage" mapping #ifdef ALPHA_TLASER if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) && VA_SPACE_EV5(req->vaddr) == 2) { #else if (VA_SPACE_EV6(req->vaddr) == 0x7e) { #endif // only valid in kernel mode if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) != AlphaISA::mode_kernel) { fault(req, ((write ? MM_STAT_WR_MASK : 0) | MM_STAT_ACV_MASK)); if (write) { write_acv++; } else { read_acv++; } return DTB_Acv_Fault; } req->paddr = req->vaddr & PA_IMPL_MASK; #ifndef ALPHA_TLASER // sign extend the physical address properly if (req->paddr & PA_UNCACHED_BIT_40) req->paddr |= ULL(0xf0000000000); else req->paddr &= ULL(0xffffffffff); #endif } else { if (write) write_accesses++; else read_accesses++; // not a physical address: need to look up pte AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr), DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN])); if (!pte) { // page fault fault(req, (write ? MM_STAT_WR_MASK : 0) | MM_STAT_DTB_MISS_MASK); if (write) { write_misses++; } else { read_misses++; } return (req->flags & VPTE) ? Pdtb_Miss_Fault : Ndtb_Miss_Fault; } req->paddr = PA_PFN2PA(pte->ppn) | VA_POFS(req->vaddr); if (write) { if (!(pte->xwe & MODE2MASK(mode))) { // declare the instruction access fault fault(req, (MM_STAT_WR_MASK | MM_STAT_ACV_MASK | (pte->fonw ? MM_STAT_FONW_MASK : 0))); write_acv++; return DTB_Fault_Fault; } if (pte->fonw) { fault(req, MM_STAT_WR_MASK | MM_STAT_FONW_MASK); write_acv++; return DTB_Fault_Fault; } } else { if (!(pte->xre & MODE2MASK(mode))) { fault(req, (MM_STAT_ACV_MASK | (pte->fonr ? MM_STAT_FONR_MASK : 0))); read_acv++; return DTB_Acv_Fault; } if (pte->fonr) { fault(req, MM_STAT_FONR_MASK); read_acv++; return DTB_Fault_Fault; } } } if (write) write_hits++; else read_hits++; } // check that the physical address is ok (catch bad physical addresses) if (req->paddr & ~PA_IMPL_MASK) return Machine_Check_Fault; checkCacheability(req); return No_Fault; } AlphaISA::PTE & AlphaTLB::index(bool advance) { AlphaISA::PTE *pte = &table[nlu]; if (advance) nextnlu(); return *pte; } DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB) BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) Param size; END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB) INIT_PARAM_DFLT(size, "TLB size", 48) END_INIT_SIM_OBJECT_PARAMS(AlphaITB) CREATE_SIM_OBJECT(AlphaITB) { return new AlphaITB(getInstanceName(), size); } REGISTER_SIM_OBJECT("AlphaITB", AlphaITB) BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) Param size; END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB) INIT_PARAM_DFLT(size, "TLB size", 64) END_INIT_SIM_OBJECT_PARAMS(AlphaDTB) CREATE_SIM_OBJECT(AlphaDTB) { return new AlphaDTB(getInstanceName(), size); } REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)