// -*- mode:c++ -*- // Copyright (c) 2003-2005 The Regents of The University of Michigan // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. output exec {{ /// Return opa + opb, summing carry into third arg. inline uint64_t addc(uint64_t opa, uint64_t opb, int &carry) { uint64_t res = opa + opb; if (res < opa || res < opb) ++carry; return res; } /// Multiply two 64-bit values (opa * opb), returning the 128-bit /// product in res_hi and res_lo. inline void mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo) { // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies uint64_t opa_hi = opa<63:32>; uint64_t opa_lo = opa<31:0>; uint64_t opb_hi = opb<63:32>; uint64_t opb_lo = opb<31:0>; res_lo = opa_lo * opb_lo; // The middle partial products logically belong in bit // positions 95 to 32. Thus the lower 32 bits of each product // sum into the upper 32 bits of the low result, while the // upper 32 sum into the low 32 bits of the upper result. uint64_t partial1 = opa_hi * opb_lo; uint64_t partial2 = opa_lo * opb_hi; uint64_t partial1_lo = partial1<31:0> << 32; uint64_t partial1_hi = partial1<63:32>; uint64_t partial2_lo = partial2<31:0> << 32; uint64_t partial2_hi = partial2<63:32>; // Add partial1_lo and partial2_lo to res_lo, keeping track // of any carries out int carry_out = 0; res_lo = addc(partial1_lo, res_lo, carry_out); res_lo = addc(partial2_lo, res_lo, carry_out); // Now calculate the high 64 bits... res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out; } /// Map 8-bit S-floating exponent to 11-bit T-floating exponent. /// See Table 2-2 of Alpha AHB. inline int map_s(int old_exp) { int hibit = old_exp<7:>; int lobits = old_exp<6:0>; if (hibit == 1) { return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits); } else { return (lobits == 0) ? 0 : (0x380 | lobits); } } /// Convert a 32-bit S-floating value to the equivalent 64-bit /// representation to be stored in an FP reg. inline uint64_t s_to_t(uint32_t s_val) { uint64_t tmp = s_val; return (tmp<31:> << 63 // sign bit | (uint64_t)map_s(tmp<30:23>) << 52 // exponent | tmp<22:0> << 29); // fraction } /// Convert a 64-bit T-floating value to the equivalent 32-bit /// S-floating representation to be stored in memory. inline int32_t t_to_s(uint64_t t_val) { return (t_val<63:62> << 30 // sign bit & hi exp bit | t_val<58:29>); // rest of exp & fraction } }};