/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "arch/alpha/alpha_memory.hh" #include "arch/alpha/isa_traits.hh" #include "arch/alpha/osfpal.hh" #include "base/kgdb.h" #include "base/remote_gdb.hh" #include "base/stats/events.hh" #include "config/full_system.hh" #include "cpu/base.hh" #include "cpu/exec_context.hh" #include "cpu/fast/cpu.hh" #include "kern/kernel_stats.hh" #include "sim/debug.hh" #include "sim/sim_events.hh" #if FULL_SYSTEM using namespace EV5; //////////////////////////////////////////////////////////////////////// // // // void AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow) { if (regs->pal_shadow == use_shadow) panic("swap_palshadow: wrong PAL shadow state"); regs->pal_shadow = use_shadow; for (int i = 0; i < NumIntRegs; i++) { if (reg_redir[i]) { IntReg temp = regs->intRegFile[i]; regs->intRegFile[i] = regs->palregs[i]; regs->palregs[i] = temp; } } } //////////////////////////////////////////////////////////////////////// // // Machine dependent functions // void AlphaISA::initCPU(RegFile *regs, int cpuId) { initIPRs(®s->miscRegs, cpuId); // CPU comes up with PAL regs enabled swap_palshadow(regs, true); regs->intRegFile[16] = cpuId; regs->intRegFile[0] = cpuId; regs->pc = regs->miscRegs.readReg(IPR_PAL_BASE) + fault_addr(ResetFault); regs->npc = regs->pc + sizeof(MachInst); } //////////////////////////////////////////////////////////////////////// // // alpha exceptions - value equals trap address, update with MD_FAULT_TYPE // const Addr AlphaISA::fault_addr(Fault fault) { //Check for the system wide faults if(fault == NoFault) return 0x0000; else if(fault == MachineCheckFault) return 0x0401; else if(fault == AlignmentFault) return 0x0301; //Deal with the alpha specific faults return ((AlphaFault*)fault)->vect; }; const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = { /* 0 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 8 */ 1, 1, 1, 1, 1, 1, 1, 0, /* 16 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 }; //////////////////////////////////////////////////////////////////////// // // // void AlphaISA::initIPRs(MiscRegFile *miscRegs, int cpuId) { miscRegs->clearIprs(); miscRegs->setReg(IPR_PAL_BASE, PalBase); miscRegs->setReg(IPR_MCSR, 0x6); miscRegs->setReg(IPR_PALtemp16, cpuId); } template void AlphaISA::processInterrupts(CPU *cpu) { //Check if there are any outstanding interrupts //Handle the interrupts int ipl = 0; int summary = 0; cpu->checkInterrupts = false; if (cpu->readMiscReg(IPR_ASTRR)) panic("asynchronous traps not implemented\n"); if (cpu->readMiscReg(IPR_SIRR)) { for (int i = INTLEVEL_SOFTWARE_MIN; i < INTLEVEL_SOFTWARE_MAX; i++) { if (cpu->readMiscReg(IPR_SIRR) & (ULL(1) << i)) { // See table 4-19 of the 21164 hardware reference ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1; summary |= (ULL(1) << i); } } } uint64_t interrupts = cpu->intr_status(); if (interrupts) { for (int i = INTLEVEL_EXTERNAL_MIN; i < INTLEVEL_EXTERNAL_MAX; i++) { if (interrupts & (ULL(1) << i)) { // See table 4-19 of the 21164 hardware reference ipl = i; summary |= (ULL(1) << i); } } } if (ipl && ipl > cpu->readMiscReg(IPR_IPLR)) { cpu->setMiscReg(IPR_ISR, summary); cpu->setMiscReg(IPR_INTID, ipl); cpu->trap(InterruptFault); DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n", cpu->readMiscReg(IPR_IPLR), ipl, summary); } } template void AlphaISA::zeroRegisters(CPU *cpu) { // Insure ISA semantics // (no longer very clean due to the change in setIntReg() in the // cpu model. Consider changing later.) cpu->xc->setIntReg(ZeroReg, 0); cpu->xc->setFloatRegDouble(ZeroReg, 0.0); } void ExecContext::ev5_trap(Fault fault) { DPRINTF(Fault, "Fault %s at PC: %#x\n", fault->name, regs.pc); cpu->recordEvent(csprintf("Fault %s", fault->name)); assert(!misspeculating()); kernelStats->fault(fault); if (fault == ArithmeticFault) panic("Arithmetic traps are unimplemented!"); // exception restart address if (fault != InterruptFault || !inPalMode()) setMiscReg(AlphaISA::IPR_EXC_ADDR, regs.pc); if (fault == PalFault || fault == ArithmeticFault /* || fault == InterruptFault && !inPalMode() */) { // traps... skip faulting instruction setMiscReg(AlphaISA::IPR_EXC_ADDR, readMiscReg(AlphaISA::IPR_EXC_ADDR) + 4); } if (!inPalMode()) AlphaISA::swap_palshadow(®s, true); regs.pc = readMiscReg(AlphaISA::IPR_PAL_BASE) + AlphaISA::fault_addr(fault); regs.npc = regs.pc + sizeof(MachInst); } void AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc) { bool use_pc = (fault == NoFault); if (fault == ArithmeticFault) panic("arithmetic faults NYI..."); // compute exception restart address if (use_pc || fault == PalFault || fault == ArithmeticFault) { // traps... skip faulting instruction regs->miscRegs.setReg(IPR_EXC_ADDR, regs->pc + 4); } else { // fault, post fault at excepting instruction regs->miscRegs.setReg(IPR_EXC_ADDR, regs->pc); } // jump to expection address (PAL PC bit set here as well...) if (!use_pc) regs->npc = regs->miscRegs.readReg(IPR_PAL_BASE) + fault_addr(fault); else regs->npc = regs->miscRegs.readReg(IPR_PAL_BASE) + pc; // that's it! (orders of magnitude less painful than x86) } Fault ExecContext::hwrei() { if (!inPalMode()) return UnimplementedOpcodeFault; setNextPC(readMiscReg(AlphaISA::IPR_EXC_ADDR)); if (!misspeculating()) { kernelStats->hwrei(); if ((readMiscReg(AlphaISA::IPR_EXC_ADDR) & 1) == 0) AlphaISA::swap_palshadow(®s, false); cpu->checkInterrupts = true; } // FIXME: XXX check for interrupts? XXX return NoFault; } void AlphaISA::MiscRegFile::clearIprs() { bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg)); } AlphaISA::MiscReg AlphaISA::MiscRegFile::readIpr(int idx, Fault &fault, ExecContext *xc) { uint64_t retval = 0; // return value, default 0 switch (idx) { case AlphaISA::IPR_PALtemp0: case AlphaISA::IPR_PALtemp1: case AlphaISA::IPR_PALtemp2: case AlphaISA::IPR_PALtemp3: case AlphaISA::IPR_PALtemp4: case AlphaISA::IPR_PALtemp5: case AlphaISA::IPR_PALtemp6: case AlphaISA::IPR_PALtemp7: case AlphaISA::IPR_PALtemp8: case AlphaISA::IPR_PALtemp9: case AlphaISA::IPR_PALtemp10: case AlphaISA::IPR_PALtemp11: case AlphaISA::IPR_PALtemp12: case AlphaISA::IPR_PALtemp13: case AlphaISA::IPR_PALtemp14: case AlphaISA::IPR_PALtemp15: case AlphaISA::IPR_PALtemp16: case AlphaISA::IPR_PALtemp17: case AlphaISA::IPR_PALtemp18: case AlphaISA::IPR_PALtemp19: case AlphaISA::IPR_PALtemp20: case AlphaISA::IPR_PALtemp21: case AlphaISA::IPR_PALtemp22: case AlphaISA::IPR_PALtemp23: case AlphaISA::IPR_PAL_BASE: case AlphaISA::IPR_IVPTBR: case AlphaISA::IPR_DC_MODE: case AlphaISA::IPR_MAF_MODE: case AlphaISA::IPR_ISR: case AlphaISA::IPR_EXC_ADDR: case AlphaISA::IPR_IC_PERR_STAT: case AlphaISA::IPR_DC_PERR_STAT: case AlphaISA::IPR_MCSR: case AlphaISA::IPR_ASTRR: case AlphaISA::IPR_ASTER: case AlphaISA::IPR_SIRR: case AlphaISA::IPR_ICSR: case AlphaISA::IPR_ICM: case AlphaISA::IPR_DTB_CM: case AlphaISA::IPR_IPLR: case AlphaISA::IPR_INTID: case AlphaISA::IPR_PMCTR: // no side-effect retval = ipr[idx]; break; case AlphaISA::IPR_CC: retval |= ipr[idx] & ULL(0xffffffff00000000); retval |= xc->cpu->curCycle() & ULL(0x00000000ffffffff); break; case AlphaISA::IPR_VA: retval = ipr[idx]; break; case AlphaISA::IPR_VA_FORM: case AlphaISA::IPR_MM_STAT: case AlphaISA::IPR_IFAULT_VA_FORM: case AlphaISA::IPR_EXC_MASK: case AlphaISA::IPR_EXC_SUM: retval = ipr[idx]; break; case AlphaISA::IPR_DTB_PTE: { AlphaISA::PTE &pte = xc->dtb->index(!xc->misspeculating()); retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32; retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8; retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12; retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1; retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2; retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4; retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57; } break; // write only registers case AlphaISA::IPR_HWINT_CLR: case AlphaISA::IPR_SL_XMIT: case AlphaISA::IPR_DC_FLUSH: case AlphaISA::IPR_IC_FLUSH: case AlphaISA::IPR_ALT_MODE: case AlphaISA::IPR_DTB_IA: case AlphaISA::IPR_DTB_IAP: case AlphaISA::IPR_ITB_IA: case AlphaISA::IPR_ITB_IAP: fault = UnimplementedOpcodeFault; break; default: // invalid IPR fault = UnimplementedOpcodeFault; break; } return retval; } #ifdef DEBUG // Cause the simulator to break when changing to the following IPL int break_ipl = -1; #endif Fault AlphaISA::MiscRegFile::setIpr(int idx, uint64_t val, ExecContext *xc) { uint64_t old; if (xc->misspeculating()) return NoFault; switch (idx) { case AlphaISA::IPR_PALtemp0: case AlphaISA::IPR_PALtemp1: case AlphaISA::IPR_PALtemp2: case AlphaISA::IPR_PALtemp3: case AlphaISA::IPR_PALtemp4: case AlphaISA::IPR_PALtemp5: case AlphaISA::IPR_PALtemp6: case AlphaISA::IPR_PALtemp7: case AlphaISA::IPR_PALtemp8: case AlphaISA::IPR_PALtemp9: case AlphaISA::IPR_PALtemp10: case AlphaISA::IPR_PALtemp11: case AlphaISA::IPR_PALtemp12: case AlphaISA::IPR_PALtemp13: case AlphaISA::IPR_PALtemp14: case AlphaISA::IPR_PALtemp15: case AlphaISA::IPR_PALtemp16: case AlphaISA::IPR_PALtemp17: case AlphaISA::IPR_PALtemp18: case AlphaISA::IPR_PALtemp19: case AlphaISA::IPR_PALtemp20: case AlphaISA::IPR_PALtemp21: case AlphaISA::IPR_PALtemp22: case AlphaISA::IPR_PAL_BASE: case AlphaISA::IPR_IC_PERR_STAT: case AlphaISA::IPR_DC_PERR_STAT: case AlphaISA::IPR_PMCTR: // write entire quad w/ no side-effect ipr[idx] = val; break; case AlphaISA::IPR_CC_CTL: // This IPR resets the cycle counter. We assume this only // happens once... let's verify that. assert(ipr[idx] == 0); ipr[idx] = 1; break; case AlphaISA::IPR_CC: // This IPR only writes the upper 64 bits. It's ok to write // all 64 here since we mask out the lower 32 in rpcc (see // isa_desc). ipr[idx] = val; break; case AlphaISA::IPR_PALtemp23: // write entire quad w/ no side-effect old = ipr[idx]; ipr[idx] = val; xc->kernelStats->context(old, val); break; case AlphaISA::IPR_DTB_PTE: // write entire quad w/ no side-effect, tag is forthcoming ipr[idx] = val; break; case AlphaISA::IPR_EXC_ADDR: // second least significant bit in PC is always zero ipr[idx] = val & ~2; break; case AlphaISA::IPR_ASTRR: case AlphaISA::IPR_ASTER: // only write least significant four bits - privilege mask ipr[idx] = val & 0xf; break; case AlphaISA::IPR_IPLR: #ifdef DEBUG if (break_ipl != -1 && break_ipl == (val & 0x1f)) debug_break(); #endif // only write least significant five bits - interrupt level ipr[idx] = val & 0x1f; xc->kernelStats->swpipl(ipr[idx]); break; case AlphaISA::IPR_DTB_CM: if (val & 0x18) xc->kernelStats->mode(Kernel::user); else xc->kernelStats->mode(Kernel::kernel); case AlphaISA::IPR_ICM: // only write two mode bits - processor mode ipr[idx] = val & 0x18; break; case AlphaISA::IPR_ALT_MODE: // only write two mode bits - processor mode ipr[idx] = val & 0x18; break; case AlphaISA::IPR_MCSR: // more here after optimization... ipr[idx] = val; break; case AlphaISA::IPR_SIRR: // only write software interrupt mask ipr[idx] = val & 0x7fff0; break; case AlphaISA::IPR_ICSR: ipr[idx] = val & ULL(0xffffff0300); break; case AlphaISA::IPR_IVPTBR: case AlphaISA::IPR_MVPTBR: ipr[idx] = val & ULL(0xffffffffc0000000); break; case AlphaISA::IPR_DC_TEST_CTL: ipr[idx] = val & 0x1ffb; break; case AlphaISA::IPR_DC_MODE: case AlphaISA::IPR_MAF_MODE: ipr[idx] = val & 0x3f; break; case AlphaISA::IPR_ITB_ASN: ipr[idx] = val & 0x7f0; break; case AlphaISA::IPR_DTB_ASN: ipr[idx] = val & ULL(0xfe00000000000000); break; case AlphaISA::IPR_EXC_SUM: case AlphaISA::IPR_EXC_MASK: // any write to this register clears it ipr[idx] = 0; break; case AlphaISA::IPR_INTID: case AlphaISA::IPR_SL_RCV: case AlphaISA::IPR_MM_STAT: case AlphaISA::IPR_ITB_PTE_TEMP: case AlphaISA::IPR_DTB_PTE_TEMP: // read-only registers return UnimplementedOpcodeFault; case AlphaISA::IPR_HWINT_CLR: case AlphaISA::IPR_SL_XMIT: case AlphaISA::IPR_DC_FLUSH: case AlphaISA::IPR_IC_FLUSH: // the following are write only ipr[idx] = val; break; case AlphaISA::IPR_DTB_IA: // really a control write ipr[idx] = 0; xc->dtb->flushAll(); break; case AlphaISA::IPR_DTB_IAP: // really a control write ipr[idx] = 0; xc->dtb->flushProcesses(); break; case AlphaISA::IPR_DTB_IS: // really a control write ipr[idx] = val; xc->dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN])); break; case AlphaISA::IPR_DTB_TAG: { struct AlphaISA::PTE pte; // FIXME: granularity hints NYI... if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0) panic("PTE GH field != 0"); // write entire quad ipr[idx] = val; // construct PTE for new entry pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]); pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]); pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]); pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]); pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]); pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]); pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]); // insert new TAG/PTE value into data TLB xc->dtb->insert(val, pte); } break; case AlphaISA::IPR_ITB_PTE: { struct AlphaISA::PTE pte; // FIXME: granularity hints NYI... if (ITB_PTE_GH(val) != 0) panic("PTE GH field != 0"); // write entire quad ipr[idx] = val; // construct PTE for new entry pte.ppn = ITB_PTE_PPN(val); pte.xre = ITB_PTE_XRE(val); pte.xwe = 0; pte.fonr = ITB_PTE_FONR(val); pte.fonw = ITB_PTE_FONW(val); pte.asma = ITB_PTE_ASMA(val); pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]); // insert new TAG/PTE value into data TLB xc->itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte); } break; case AlphaISA::IPR_ITB_IA: // really a control write ipr[idx] = 0; xc->itb->flushAll(); break; case AlphaISA::IPR_ITB_IAP: // really a control write ipr[idx] = 0; xc->itb->flushProcesses(); break; case AlphaISA::IPR_ITB_IS: // really a control write ipr[idx] = val; xc->itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN])); break; default: // invalid IPR return UnimplementedOpcodeFault; } // no error... return NoFault; } /** * Check for special simulator handling of specific PAL calls. * If return value is false, actual PAL call will be suppressed. */ bool ExecContext::simPalCheck(int palFunc) { kernelStats->callpal(palFunc); switch (palFunc) { case PAL::halt: halt(); if (--System::numSystemsRunning == 0) new SimExitEvent("all cpus halted"); break; case PAL::bpt: case PAL::bugchk: if (system->breakpoint()) return false; break; } return true; } //Forward instantiation for FastCPU object template void AlphaISA::processInterrupts(FastCPU *xc); //Forward instantiation for FastCPU object template void AlphaISA::zeroRegisters(FastCPU *xc); #endif // FULL_SYSTEM