#include "model/std_cells/XOR2.h" #include #include "model/PortInfo.h" #include "model/EventInfo.h" #include "model/TransitionInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::ceil; using std::max; XOR2::XOR2(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initProperties(); } XOR2::~XOR2() {} void XOR2::initProperties() { return; } void XOR2::constructModel() { // All constructModel should do is create Area/NDDPower/Energy Results as // well as instantiate any sub-instances using only the hard parameters createInputPort("A"); createInputPort("B"); createOutputPort("Y"); createLoad("A_Cap"); createLoad("B_Cap"); createDelay("A_to_Y_delay"); createDelay("B_to_Y_delay"); createDriver("Y_Ron", true); ElectricalLoad* a_cap = getLoad("A_Cap"); ElectricalLoad* b_cap = getLoad("B_Cap"); ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); ElectricalDriver* y_ron = getDriver("Y_Ron"); getNet("A")->addDownstreamNode(a_cap); getNet("B")->addDownstreamNode(b_cap); a_cap->addDownstreamNode(a_to_y_delay); b_cap->addDownstreamNode(b_to_y_delay); a_to_y_delay->addDownstreamNode(y_ron); b_to_y_delay->addDownstreamNode(y_ron); y_ron->addDownstreamNode(getNet("Y")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create XOR2 Event Energy Result createElectricalEventAtomicResult("XOR2"); getEventInfo("Idle")->setStaticTransitionInfos(); return; } void XOR2::updateModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "XOR2_X" + (String) drive_strength; // Get timing parameters getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); return; } void XOR2::evaluateModel() { return; } void XOR2::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "XOR2_X" + (String) drive_strength; // Propagate the transition info and get the 0->1 transtion count propagateTransitionInfo(); double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01(); double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01(); double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; getNddPowerResult("Leakage")->setValue(leakage); // Get VDD double vdd = getTechModel()->get("Vdd"); // Get capacitances double a_b_cap = cache->get(cell_name + "->Cap->A_b"); double b_b_cap = cache->get(cell_name + "->Cap->B_b"); double y_cap = cache->get(cell_name + "->Cap->Y"); double y_load_cap = getNet("Y")->getTotalDownstreamCap(); // Calculate XOR Event energy double xor2_event_result = 0.0; xor2_event_result += a_b_cap * A_num_trans_01; xor2_event_result += b_b_cap * B_num_trans_01; xor2_event_result += (y_cap + y_load_cap) * Y_num_trans_01; xor2_event_result *= vdd * vdd; getEventResult("XOR2")->setValue(xor2_event_result); return; } void XOR2::propagateTransitionInfo() { // Get input signal transition info const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; double A_prob_10 = A_prob_01; double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; double B_prob_10 = B_prob_01; double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; // Set output transition info double Y_prob_00 = A_prob_00 * B_prob_00 + A_prob_01 * B_prob_01 + A_prob_10 * B_prob_10 + A_prob_11 * B_prob_11; double Y_prob_01 = A_prob_00 * B_prob_01 + A_prob_01 * B_prob_00 + A_prob_10 * B_prob_11 + A_prob_11 * B_prob_10; double Y_prob_11 = A_prob_00 * B_prob_11 + A_prob_01 * B_prob_10 + A_prob_10 * B_prob_01 + A_prob_11 * B_prob_00; // Check that probabilities add up to 1.0 with some finite tolerance ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); // Turn probability of transitions per cycle into number of transitions per time unit TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); getOutputPort("Y")->setTransitionInfo(trans_Y); return; } // Creates the standard cell, characterizes and abstracts away the details void XOR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Standard cell cache string String cell_name = "XOR2_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Now actually build the full standard cell model createInputPort("A"); createInputPort("B"); createOutputPort("Y"); createNet("A_b"); createNet("B_b"); // Adds macros CellMacros::addInverter(this, "INV1", false, true, "A", "A_b"); CellMacros::addInverter(this, "INV2", false, true, "B", "B_b"); CellMacros::addTristate(this, "INVZ1", true, true, true, true, "B", "A", "A_b", "Y"); CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B_b", "A_b", "A", "Y"); // I have no idea how to size each of the parts haha CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.500); CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.500); CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 1.000); CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 1.000); // Cache area result double area = 0.0; area += gate_pitch * getTotalHeight() * 1; area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); cache->set(cell_name + "->ActiveArea", area); Log::printLine(cell_name + "->ActiveArea=" + (String) area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- // Cache leakage power results (for every single signal combination) double leakage_00 = 0; //!A, !B double leakage_01 = 0; //!A, B double leakage_10 = 0; //A, !B double leakage_11 = 0; //A, B //This is so painful... leakage_00 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_00 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_00 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); leakage_00 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_01 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_01 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_01 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); leakage_01 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_10 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_10 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_10 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_10 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); leakage_11 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_11 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_11 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_11 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); cache->set(cell_name + "->Leakage->!A!B", leakage_00); cache->set(cell_name + "->Leakage->!AB", leakage_01); cache->set(cell_name + "->Leakage->A!B", leakage_10); cache->set(cell_name + "->Leakage->AB", leakage_11); Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); // -------------------------------------------------------------------- // Cache event energy results /* double event_a_flip = 0.0; event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble(); event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); cache->set(cell_name + "->Event_A_Flip", event_a_flip); Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); double event_b_flip = 0.0; event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble(); event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble(); cache->set(cell_name + "->Event_B_Flip", event_b_flip); Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); double event_y_flip = 0.0; event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); cache->set(cell_name + "->Event_Y_Flip", event_y_flip); Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); */ // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- // Build abstracted timing model double a_cap = getNet("A")->getTotalDownstreamCap(); double b_cap = getNet("B")->getTotalDownstreamCap(); double a_b_cap = getNet("A_b")->getTotalDownstreamCap(); double b_b_cap = getNet("B_b")->getTotalDownstreamCap(); double y_cap = getNet("Y")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->A", a_cap); cache->set(cell_name + "->Cap->B", b_cap); cache->set(cell_name + "->Cap->A_b", a_b_cap); cache->set(cell_name + "->Cap->B_b", b_b_cap); cache->set(cell_name + "->Cap->Y", y_cap); Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); Log::printLine(cell_name + "->Cap->A=" + (String) a_b_cap); Log::printLine(cell_name + "->Cap->B=" + (String) b_b_cap); Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- double y_ron = (getDriver("INVZ1_RonZN")->getOutputRes() + getDriver("INVZ2_RonZN")->getOutputRes()) / 2; double a_to_y_delay = 0.0; a_to_y_delay += getDriver("INV1_RonZN")->calculateDelay(); a_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()); double b_to_y_delay = 0.0; b_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()); cache->set(cell_name + "->DriveRes->Y", y_ron); cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); // -------------------------------------------------------------------- return; } } // namespace DSENT