/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/std_cells/ADDF.h" #include #include "model/PortInfo.h" #include "model/EventInfo.h" #include "model/TransitionInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::ceil; using std::max; ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initParameters(); initProperties(); } ADDF::~ADDF() {} void ADDF::initProperties() { return; } void ADDF::constructModel() { // All constructModel should do is create Area/NDDPower/Energy Results as // well as instantiate any sub-instances using only the hard parameters createInputPort("A"); createInputPort("B"); createInputPort("CI"); createOutputPort("S"); createOutputPort("CO"); createLoad("A_Cap"); createLoad("B_Cap"); createLoad("CI_Cap"); createDelay("A_to_S_delay"); createDelay("B_to_S_delay"); createDelay("CI_to_S_delay"); createDelay("A_to_CO_delay"); createDelay("B_to_CO_delay"); createDelay("CI_to_CO_delay"); createDriver("S_Ron", true); createDriver("CO_Ron", true); ElectricalLoad* a_cap = getLoad("A_Cap"); ElectricalLoad* b_cap = getLoad("B_Cap"); ElectricalLoad* ci_cap = getLoad("CI_Cap"); ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay"); ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay"); ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay"); ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay"); ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay"); ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay"); ElectricalDriver* s_ron = getDriver("S_Ron"); ElectricalDriver* co_ron = getDriver("CO_Ron"); getNet("A")->addDownstreamNode(a_cap); getNet("B")->addDownstreamNode(b_cap); getNet("CI")->addDownstreamNode(ci_cap); a_cap->addDownstreamNode(a_to_s_delay); b_cap->addDownstreamNode(b_to_s_delay); ci_cap->addDownstreamNode(ci_to_s_delay); a_cap->addDownstreamNode(a_to_co_delay); b_cap->addDownstreamNode(b_to_co_delay); ci_cap->addDownstreamNode(ci_to_co_delay); a_to_s_delay->addDownstreamNode(s_ron); b_to_s_delay->addDownstreamNode(s_ron); ci_to_s_delay->addDownstreamNode(s_ron); a_to_co_delay->addDownstreamNode(co_ron); b_to_co_delay->addDownstreamNode(co_ron); ci_to_co_delay->addDownstreamNode(co_ron); s_ron->addDownstreamNode(getNet("S")); co_ron->addDownstreamNode(getNet("CO")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create ADDF Event Energy Result createElectricalEventAtomicResult("ADDF"); getEventInfo("Idle")->setStaticTransitionInfos(); return; } void ADDF::updateModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "ADDF_X" + (String) drive_strength; // Get timing parameters getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI")); getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S")); getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S")); getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S")); getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO")); getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO")); getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO")); getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S")); getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire")); return; } void ADDF::evaluateModel() { return; } void ADDF::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "ADDF_X" + (String) drive_strength; // Propagate the transition info and get the 0->1 transition count propagateTransitionInfo(); double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1(); double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01(); double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01(); double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01(); double P_num_trans_01 = m_trans_P_.getNumberTransitions01(); double G_num_trans_01 = m_trans_G_.getNumberTransitions01(); double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01(); double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01(); double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI); leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI; leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI); leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI; leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI); leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI; leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI); leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI; getNddPowerResult("Leakage")->setValue(leakage); // Get VDD double vdd = getTechModel()->get("Vdd"); // Get capacitances double a_b_cap = cache->get(cell_name + "->Cap->A_b"); double b_b_cap = cache->get(cell_name + "->Cap->B_b"); double ci_b_cap = cache->get(cell_name + "->Cap->CI_b"); double p_cap = cache->get(cell_name + "->Cap->P"); double p_b_cap = cache->get(cell_name + "->Cap->P_b"); double s_cap = cache->get(cell_name + "->Cap->S"); double cp_cap = cache->get(cell_name + "->Cap->CP"); double g_cap = cache->get(cell_name + "->Cap->G"); double co_cap = cache->get(cell_name + "->Cap->CO"); double s_load_cap = getNet("S")->getTotalDownstreamCap(); double co_load_cap = getNet("CO")->getTotalDownstreamCap(); // Calculate ADDF Event energy double addf_event_energy = 0.0; addf_event_energy += a_b_cap * A_num_trans_01; addf_event_energy += b_b_cap * B_num_trans_01; addf_event_energy += ci_b_cap * CI_num_trans_01; addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01; addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01; addf_event_energy += cp_cap * CP_num_trans_01; addf_event_energy += g_cap * G_num_trans_01; addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01; addf_event_energy *= vdd * vdd; getEventResult("ADDF")->setValue(addf_event_energy); return; } void ADDF::propagateTransitionInfo() { const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo(); double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier()); const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult); double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; double A_prob_10 = A_prob_01; double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; double B_prob_10 = B_prob_01; double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult; double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult; double CI_prob_10 = CI_prob_01; double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult; // Set P transition info double P_prob_00 = A_prob_00 * B_prob_00 + A_prob_01 * B_prob_01 + A_prob_10 * B_prob_10 + A_prob_11 * B_prob_11; double P_prob_01 = A_prob_00 * B_prob_01 + A_prob_01 * B_prob_00 + A_prob_10 * B_prob_11 + A_prob_11 * B_prob_10; double P_prob_10 = P_prob_01; double P_prob_11 = A_prob_00 * B_prob_11 + A_prob_01 * B_prob_10 + A_prob_10 * B_prob_01 + A_prob_11 * B_prob_00; // Set G transition info double G_prob_00 = A_prob_11 * B_prob_11; double G_prob_01 = A_prob_11 * B_prob_10 + A_prob_10 * (B_prob_11 + B_prob_10); double G_prob_10 = G_prob_01; double G_prob_11 = A_prob_00 + A_prob_01 * (B_prob_00 + B_prob_10) + A_prob_10 * (B_prob_00 + B_prob_01) + A_prob_11 * B_prob_00; // Set CP transition info double CP_prob_00 = P_prob_11 * CI_prob_11; double CP_prob_01 = P_prob_11 * CI_prob_10 + P_prob_10 * (CI_prob_11 + CI_prob_10); double CP_prob_10 = CP_prob_01; double CP_prob_11 = P_prob_00 + P_prob_01 * (CI_prob_00 + CI_prob_10) + P_prob_10 * (CI_prob_00 + CI_prob_01) + P_prob_11 * CI_prob_00; // Set S transition info double S_prob_00 = P_prob_00 * CI_prob_00 + P_prob_01 * CI_prob_01 + P_prob_10 * CI_prob_10 + P_prob_11 * CI_prob_11; double S_prob_01 = P_prob_00 * CI_prob_01 + P_prob_01 * CI_prob_00 + P_prob_10 * CI_prob_11 + P_prob_11 * CI_prob_10; double S_prob_11 = P_prob_00 * CI_prob_11 + P_prob_01 * CI_prob_10 + P_prob_10 * CI_prob_01 + P_prob_11 * CI_prob_00; // Set CO transition info double CO_prob_00 = G_prob_11 * CP_prob_11; double CO_prob_01 = G_prob_11 * CP_prob_10 + G_prob_10 * (CP_prob_11 + CP_prob_10); double CO_prob_11 = G_prob_00 + G_prob_01 * (CP_prob_00 + CP_prob_10) + G_prob_10 * (CP_prob_00 + CP_prob_01) + G_prob_11 * CP_prob_00; m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult); m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult); m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult); // Check that probabilities add up to 1.0 with some finite tolerance ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0), "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" + (String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!"); // Check that probabilities add up to 1.0 with some finite tolerance ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0), "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" + (String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!"); // Turn probability of transitions per cycle into number of transitions per time unit TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult); getOutputPort("S")->setTransitionInfo(trans_S); TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult); getOutputPort("CO")->setTransitionInfo(trans_CO); return; } // Creates the standard cell, characterizes and abstracts away the details void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Standard cell cache string String cell_name = "ADDF_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Now actually build the full standard cell model createInputPort("A"); createInputPort("B"); createInputPort("CI"); createOutputPort("S"); createOutputPort("CO"); createNet("A_b"); createNet("B_b"); createNet("CI_b"); createNet("P"); createNet("P_b"); createNet("G"); //actually G_b since it is NAND'ed createNet("CP"); //actually (CP)_b since it is NAND'ed // Adds macros CellMacros::addInverter(this, "INV1", false, true, "A", "A_b"); CellMacros::addInverter(this, "INV2", false, true, "B", "B_b"); CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b"); CellMacros::addInverter(this, "INV4", false, true, "P", "P_b"); CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P"); CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P"); CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S"); CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S"); CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP"); CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G"); CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO"); // I have no idea how to size each of the parts haha CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250); CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250); CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250); CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500); CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250); CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250); CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500); CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500); CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500); CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500); CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000); // Cache area result double area = 0.0; area += gate_pitch * getTotalHeight() * 1; area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble(); cache->set(cell_name + "->Area->Active", area); cache->set(cell_name + "->Area->Metal1Wire", area); Log::printLine(cell_name + "->Area->Active=" + (String) area); Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- // Cache leakage power results (for every single signal combination) double leakage_000 = 0; //!A, !B, !CI double leakage_001 = 0; //!A, !B, CI double leakage_010 = 0; //!A, B, !CI double leakage_011 = 0; //!A, B, CI double leakage_100 = 0; //A, !B, !CI double leakage_101 = 0; //A, !B, CI double leakage_110 = 0; //A, B, !CI double leakage_111 = 0; //A, B, CI //This is so painful... leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble(); leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble(); leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble(); leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble(); leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble(); leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble(); leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble(); leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble(); leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble(); leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble(); leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble(); leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble(); leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble(); leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble(); leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble(); leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble(); leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble(); leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble(); leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble(); leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble(); leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble(); leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble(); leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble(); leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble(); leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble(); cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000); cache->set(cell_name + "->Leakage->!A!BCI", leakage_001); cache->set(cell_name + "->Leakage->!AB!CI", leakage_010); cache->set(cell_name + "->Leakage->!ABCI", leakage_011); cache->set(cell_name + "->Leakage->A!B!CI", leakage_100); cache->set(cell_name + "->Leakage->A!BCI", leakage_101); cache->set(cell_name + "->Leakage->AB!CI", leakage_110); cache->set(cell_name + "->Leakage->ABCI", leakage_111); Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000); Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001); Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010); Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011); Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100); Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101); Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110); Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111); // -------------------------------------------------------------------- /* // Cache event energy results double event_a_flip = 0.0; event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble(); event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble(); cache->set(cell_name + "->Event_A_Flip", event_a_flip); Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); double event_b_flip = 0.0; event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble(); event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble(); event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble(); cache->set(cell_name + "->Event_B_Flip", event_b_flip); Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); double event_ci_flip = 0.0; event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble(); event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble(); event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble(); event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble(); cache->set(cell_name + "->Event_CI_Flip", event_ci_flip); Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip); double event_p_flip = 0.0; event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble(); event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble(); cache->set(cell_name + "->Event_P_Flip", event_p_flip); Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip); double event_s_flip = 0.0; event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble(); event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble(); cache->set(cell_name + "->Event_S_Flip", event_s_flip); Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip); double event_cp_flip = 0.0; event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble(); event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble(); cache->set(cell_name + "->Event_CP_Flip", event_cp_flip); Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip); double event_g_flip = 0.0; event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble(); event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble(); cache->set(cell_name + "->Event_G_Flip", event_g_flip); Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip); double event_co_flip = 0.0; event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble(); cache->set(cell_name + "->Event_CO_Flip", event_co_flip); Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip); */ // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- double a_cap = getNet("A")->getTotalDownstreamCap(); double b_cap = getNet("B")->getTotalDownstreamCap(); double ci_cap = getNet("CI")->getTotalDownstreamCap(); double a_b_cap = getNet("A_b")->getTotalDownstreamCap(); double b_b_cap = getNet("B_b")->getTotalDownstreamCap(); double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap(); double p_cap = getNet("P")->getTotalDownstreamCap(); double p_b_cap = getNet("P_b")->getTotalDownstreamCap(); double s_cap = getNet("S")->getTotalDownstreamCap(); double cp_cap = getNet("CP")->getTotalDownstreamCap(); double g_cap = getNet("G")->getTotalDownstreamCap(); double co_cap = getNet("CO")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->A", a_cap); cache->set(cell_name + "->Cap->B", b_cap); cache->set(cell_name + "->Cap->CI", ci_cap); cache->set(cell_name + "->Cap->A_b", a_b_cap); cache->set(cell_name + "->Cap->B_b", b_b_cap); cache->set(cell_name + "->Cap->CI_b", ci_b_cap); cache->set(cell_name + "->Cap->P", p_cap); cache->set(cell_name + "->Cap->P_b", p_b_cap); cache->set(cell_name + "->Cap->S", s_cap); cache->set(cell_name + "->Cap->CP", cp_cap); cache->set(cell_name + "->Cap->G", g_cap); cache->set(cell_name + "->Cap->CO", co_cap); Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap); Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap); Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap); Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap); Log::printLine(cell_name + "->Cap->P=" + (String) p_cap); Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap); Log::printLine(cell_name + "->Cap->S=" + (String) s_cap); Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap); Log::printLine(cell_name + "->Cap->G=" + (String) g_cap); Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- // Build abstracted timing model double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2; double co_ron = getDriver("NAND3_RonZN")->getOutputRes(); double a_to_s_delay = 0.0; a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay(); a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()); a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay()); double b_to_s_delay = 0.0; b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()); b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay()); double ci_to_s_delay = 0.0; ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay(); ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay()); double a_to_co_delay = 0.0; a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path getDriver("INV1_RonZN")->calculateDelay() + //Carry propagate path max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) + getDriver("NAND1_RonZN")->calculateDelay()); a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); double b_to_co_delay = 0.0; b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path max(getDriver("INVZ1_RonZN")->calculateDelay(), //Carry propagate path getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) + getDriver("NAND1_RonZN")->calculateDelay()); b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); double ci_to_co_delay = 0.0; ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay(); ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); cache->set(cell_name + "->DriveRes->S", s_ron); cache->set(cell_name + "->DriveRes->CO", co_ron); cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay); cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay); cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay); cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay); cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay); cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay); Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron); Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron); Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay); Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay); Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay); Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay); Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay); Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay); // -------------------------------------------------------------------- return; } } // namespace DSENT