/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/optical/SWMRLink.h" #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/optical_graph/OpticalGraph.h" #include "model/optical_graph/OpticalWaveguide.h" #include "model/optical/RingModulator.h" #include "model/optical/RingFilter.h" #include "model/optical/RingDetector.h" #include "model/optical/LaserSource.h" #include "model/optical/ThrottledLaserSource.h" namespace DSENT { SWMRLink::SWMRLink(const String& instance_name_, const TechModel* tech_model_) : OpticalModel(instance_name_, tech_model_) { initParameters(); initProperties(); } SWMRLink::~SWMRLink() {} void SWMRLink::initParameters() { addParameterName("NumberReaders"); addParameterName("NumberWavelengths"); addParameterName("DataRate"); addParameterName("LaserType"); addParameterName("MaxReaders"); addParameterName("MinReaders"); addParameterName("OptimizeLoss", "TRUE"); return; } void SWMRLink::initProperties() { addPropertyName("Length"); addPropertyName("OptUtil", 0.5); // default to 50% utilization (a new word 50% of the time) addPropertyName("ExtinctionRatio", 6); // default properties addPropertyName("InsertionLoss", 2); // default properties return; } void SWMRLink::constructModel() { // Get parameters unsigned int number_wavelengths = getParameter("NumberWavelengths"); unsigned int number_readers = getParameter("NumberReaders"); unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt()); unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt()); // Create electrical ports createInputPort("CK"); createInputPort("In", makeNetIndex(0, number_wavelengths-1)); for (unsigned int i = 0; i < number_readers; ++i) createOutputPort("Out" + (String) i, makeNetIndex(0, number_wavelengths-1)); // Create Waveguides // Temporarily assume its all on one waveguide createWaveguide("LaserToMod", makeWavelengthGroup(0, number_wavelengths-1)); for (unsigned int i = 0; i <= number_readers; ++i) createWaveguide("WaveguideSegment[" + (String) i + "]", makeWavelengthGroup(0, number_wavelengths-1)); // Add area results addAreaResult(new Result("Photonic")); createElectricalResults(); // Setup idle event getEventInfo("Idle")->setStaticTransitionInfos(); // Create a waveguide area result addAreaResult(new AtomicResult("Waveguide")); getAreaResult("Photonic")->addSubResult(getAreaResult("Waveguide"), "Waveguide", 1.0); // Add results addNddPowerResult(new Result("Laser")); // Add event result createElectricalEventResult("BroadcastFlit"); for (unsigned int i = number_min_readers; i <= number_max_readers; ++i) createElectricalEventResult("MulticastFlit" + (String) i); buildLaser(); buildModulator(); buildDetectors(); return; } void SWMRLink::updateModel() { // Get parameters double data_rate = getParameter("DataRate"); unsigned int number_readers = getParameter("NumberReaders"); // Get properties double length = getProperty("Length"); const String& extinction_ratio = getProperty("ExtinctionRatio"); const String& insertion_loss = getProperty("InsertionLoss"); const double opt_util = getProperty("OptUtil"); // Calculate loss for each waveguide segment double segment_length = (double) length / number_readers; double segment_loss = getTechModel()->get("Waveguide->LossPerMeter").toDouble() * segment_length; // Set loss of each waveguide segment for (unsigned int i = 0; i < number_readers; ++i) getWaveguide("WaveguideSegment[" + (String) i + "]")->setLoss(segment_loss); // Calculate waveguide area double waveguide_area = length * getTechModel()->get("Waveguide->Pitch").toDouble(); getAreaResult("Waveguide")->setValue(waveguide_area); // Update the laser Model* laser = getSubInstance("Laser"); laser->setProperty("LaserEventTime", 1.0 / data_rate); laser->setProperty("OptUtil", opt_util); laser->update(); // Update the modulator Model* modulator = getSubInstance("Modulator"); modulator->setProperty("ExtinctionRatio", extinction_ratio); modulator->setProperty("InsertionLoss", insertion_loss); modulator->update(); // Update all receivers for (unsigned int i = 0; i < number_readers; ++i) { Model* detector = getSubInstance("Detector_" + (String) i); detector->update(); } return; } void SWMRLink::propagateTransitionInfo() { // Get parameters const String& laser_type = getParameter("LaserType"); unsigned int number_readers = getParameter("NumberReaders"); // Set transition info for the modulator OpticalModel* modulator = (OpticalModel*) getSubInstance("Modulator"); propagatePortTransitionInfo(modulator, "In", "In"); modulator->use(); // Modulator out transition info const TransitionInfo& mod_out_transitions = modulator->getOpticalOutputPort("Out")->getTransitionInfo(); // Set transition info for all receivers for (unsigned int i = 0; i < number_readers; ++i) { OpticalModel* detector = (OpticalModel*) getSubInstance("Detector_" + (String) i); detector->getOpticalInputPort("In")->setTransitionInfo(mod_out_transitions); detector->use(); // Propagate output transition info to output propagatePortTransitionInfo("Out" + (String) i, detector, "Out"); } // Set enable signals for the laser, if applicable if (laser_type == "Throttled") { // Figure out how many cycles the laser needs to be on double cycles = getInputPort("In")->getTransitionInfo().getFrequencyMultiplier(); OpticalModel* laser = (OpticalModel*) getSubInstance("Laser"); laser->getInputPort("LaserEnable")->setTransitionInfo(TransitionInfo(0.0, 1.0, cycles - 1.0)); laser->use(); } return; } void SWMRLink::buildLaser() { // Get parameters unsigned int number_wavelengths = getParameter("NumberWavelengths"); unsigned int number_readers = getParameter("NumberReaders"); unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt()); unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt()); const String& laser_type = getParameter("LaserType"); // Create laser OpticalModel* laser = NULL; if (laser_type == "Throttled") laser = new ThrottledLaserSource("Laser", getTechModel()); else if (laser_type == "Standard") laser = new LaserSource("Laser", getTechModel()); else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown laser type '" + laser_type + "'!"); laser->setParameter("OutStart", 0); laser->setParameter("OutEnd", number_wavelengths-1); laser->setParameter("MaxDetectors", number_max_readers); laser->setParameter("MinDetectors", number_min_readers); laser->construct(); addSubInstances(laser, 1.0); getAreaResult("Photonic")->addSubResult(laser->getAreaResult("Photonic"), "Laser", 1.0); // Connect laser output port opticalPortConnect(laser, "Out", "LaserToMod"); // Without laser gating, laser is pure NDD power if (laser_type == "Standard") getNddPowerResult("Laser")->addSubResult(laser->getNddPowerResult("Laser"), "Laser", 1.0); // With laser power gating, laser is an event else { // If laser is throttled, only pay for the amount needed to reach some number of readers getEventResult("BroadcastFlit")->addSubResult(laser->getEventResult("Laser" + (String) number_max_readers), "Laser", 1.0); for (unsigned int i = number_min_readers; i <= number_max_readers; ++i) getEventResult("MulticastFlit" + (String) i)->addSubResult(laser->getEventResult("Laser" + (String) i), "Laser", 1.0); } return; } void SWMRLink::buildModulator() { // Get parameters double data_rate = getParameter("DataRate"); const String& optimize_loss = getParameter("OptimizeLoss"); unsigned int number_wavelengths = getParameter("NumberWavelengths"); unsigned int number_readers = getParameter("NumberReaders"); unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt()); unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt()); // Create modulator RingModulator* modulator = new RingModulator("Modulator", getTechModel()); modulator->setParameter("DataRate", data_rate); modulator->setParameter("InStart", 0); modulator->setParameter("InEnd", number_wavelengths-1); modulator->setParameter("ModStart", 0); modulator->setParameter("ModEnd", number_wavelengths-1); modulator->setParameter("OptimizeLoss", optimize_loss); modulator->construct(); addSubInstances(modulator, 1.0); getAreaResult("Photonic")->addSubResult(modulator->getAreaResult("Photonic"), "Modulator", 1.0); addElectricalSubResults(modulator, 1.0); // Connect electrical port portConnect(modulator, "In", "In"); // Connect modulator input, output port opticalPortConnect(modulator, "In", "LaserToMod"); opticalPortConnect(modulator, "Out", "WaveguideSegment[0]"); // Add modulator energy event for all broadcast events getEventResult("BroadcastFlit")->addSubResult(modulator->getEventResult("Modulate"), "Modulator", 1.0); for (unsigned int i = number_min_readers; i <= number_max_readers; ++i) getEventResult("MulticastFlit" + (String) i)->addSubResult(modulator->getEventResult("Modulate"), "Modulator", 1.0); return; } void SWMRLink::buildDetectors() { // Get parameters double data_rate = getParameter("DataRate"); unsigned int number_wavelengths = getParameter("NumberWavelengths"); unsigned int number_readers = getParameter("NumberReaders"); unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt()); unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt()); // Create a SWMR Configuration for (unsigned int i = 0; i < number_readers; ++i) { String n = (String) i; // Create resonant ring detector RingDetector* detector = new RingDetector("Detector_" + n, getTechModel()); detector->setParameter("DataRate", data_rate); detector->setParameter("InStart", 0); detector->setParameter("InEnd", number_wavelengths-1); detector->setParameter("DetStart", 0); detector->setParameter("DetEnd", number_wavelengths-1); detector->setParameter("DropAll", "FALSE"); detector->setParameter("Topology", RingDetector::INTEGRATINGSENSEAMP); detector->construct(); addSubInstances(detector, 1.0); getAreaResult("Photonic")->addSubResult(detector->getAreaResult("Photonic"), "Detector_" + n, 1.0); addElectricalSubResults(detector, 1.0); // connect to electrical port portConnect(detector, "Out", "Out" + (String) i); // connect optical input, output port opticalPortConnect(detector, "In", "WaveguideSegment[" + (String) i + "]"); opticalPortConnect(detector, "Out", "WaveguideSegment[" + (String) (i + 1) + "]"); } // Add an average receiver energy for all multicast events (and broadcast) Result* broadcast_event = getEventResult("BroadcastFlit"); for (unsigned int i = 0; i < number_readers; ++i) { const String detector_name = "Detector_" + (String) i; broadcast_event->addSubResult(getSubInstance(detector_name)->getEventResult("Receive"), detector_name, 1.0); } for (unsigned int i = number_min_readers; i <= number_max_readers; ++i) { Result* multicast_event = getEventResult("MulticastFlit" + (String) i); for (unsigned int j = 0; j < number_readers; ++j) { const String detector_name = "Detector_" + (String) j; multicast_event->addSubResult(getSubInstance(detector_name)->getEventResult("Receive"), detector_name, (double) i / number_readers); } } return; } } // namespace DSENT