/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/electrical/router/Router.h" #include #include #include "model/PortInfo.h" #include "model/EventInfo.h" #include "model/TransitionInfo.h" #include "model/ModelGen.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/StdCell.h" #include "model/electrical/router/RouterInputPort.h" #include "model/electrical/router/RouterSwitchAllocator.h" #include "model/timing_graph/ElectricalNet.h" namespace DSENT { using std::sqrt; using std::vector; using LibUtil::castStringVector; using LibUtil::vectorToString; Router::Router(const String& instance_name_, const TechModel* tech_model_) : ElectricalModel(instance_name_, tech_model_) { initParameters(); initProperties(); } Router::~Router() {} void Router::initParameters() { addParameterName("NumberInputPorts"); addParameterName("NumberOutputPorts"); addParameterName("NumberBitsPerFlit"); addParameterName("NumberVirtualNetworks"); addParameterName("NumberVirtualChannelsPerVirtualNetwork"); addParameterName("NumberBuffersPerVirtualChannel"); // Spec for input port addParameterName("InputPort->BufferModel"); // Spec for crossbar addParameterName("CrossbarModel"); // Spec for switch allocator addParameterName("SwitchAllocator->ArbiterModel"); // Spec for clock tree addParameterName("ClockTreeModel"); addParameterName("ClockTree->NumberLevels"); addParameterName("ClockTree->WireLayer"); addParameterName("ClockTree->WireWidthMultiplier"); addParameterName("ClockTree->WireSpacingMultiplier", 3.0); return; } void Router::initProperties() { return; } Router* Router::clone() const { // TODO return NULL; } void Router::constructModel() { // Get parameters unsigned int number_input_ports = getParameter("NumberInputPorts").toUInt(); unsigned int number_output_ports = getParameter("NumberOutputPorts").toUInt(); unsigned int number_bits_per_flit = getParameter("NumberBitsPerFlit").toUInt(); ASSERT(number_input_ports > 0, "[Error] " + getInstanceName() + " -> Number of input ports must be > 0!"); ASSERT(number_output_ports > 0, "[Error] " + getInstanceName() + " -> Number of output ports must be > 0!"); ASSERT(number_bits_per_flit > 0, "[Error] " + getInstanceName() + " -> Number of bits per buffer must be > 0!"); // Create ports createInputPort("CK"); for(unsigned int i = 0; i < number_input_ports; ++i) { createInputPort("FlitIn" + (String)i, makeNetIndex(0, number_bits_per_flit-1)); } for(unsigned int i = 0; i < number_output_ports; ++i) { createOutputPort("FlitOut" + (String)i, makeNetIndex(0, number_bits_per_flit-1)); } // Create area, power, event results createElectricalResults(); getEventInfo("Idle")->setStaticTransitionInfos(); getEventInfo("Idle")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); createElectricalEventResult("ReadBuffer"); getEventInfo("ReadBuffer")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); createElectricalEventResult("WriteBuffer"); getEventInfo("WriteBuffer")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); for(unsigned int i = 1; i <= number_output_ports; ++i) { createElectricalEventResult("TraverseCrossbar->Multicast" + (String)i); getEventInfo("TraverseCrossbar->Multicast" + (String)i)->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); } createElectricalEventResult("ArbitrateSwitch->ArbitrateStage1"); createElectricalEventResult("ArbitrateSwitch->ArbitrateStage2"); createElectricalEventResult("DistributeClock"); getEventInfo("DistributeClock")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); // Create intermediate nets createNet("PipelineReg0_In"); createNet("PipelineReg0_Out"); createNet("PipelineReg1_In"); createNet("PipelineReg1_Out"); for(unsigned int i = 0; i < number_output_ports; ++i) { createNet("PipelineReg2_In" + (String)i); createNet("PipelineReg2_Out" + (String)i); } createRouterInputPort(); createSwitchAllocator(); createVirtualChannelAllocator(); createCrossbar(); createClockTree(); createPipelineReg(); // Get generated numbers unsigned int number_crossbar_selects = getGenProperties()->get("Crossbar->NumberSelects"); // Add write buffer event getEventResult("WriteBuffer")->addSubResult(getSubInstance("PipelineReg0")->getEventResult("DFFD"), "PipelineReg0", number_bits_per_flit); getEventResult("WriteBuffer")->addSubResult(getSubInstance("PipelineReg0")->getEventResult("DFFQ"), "PipelineReg0", number_bits_per_flit); getEventResult("WriteBuffer")->addSubResult(getSubInstance("PipelineReg0")->getEventResult("CK"), "PipelineReg0", number_bits_per_flit); getEventResult("WriteBuffer")->addSubResult(getSubInstance("InputPort")->getEventResult("WriteBuffer"), "InputPort", 1.0); // Add read buffer event getEventResult("ReadBuffer")->addSubResult(getSubInstance("InputPort")->getEventResult("ReadBuffer"), "InputPort", 1.0); getEventResult("ReadBuffer")->addSubResult(getSubInstance("PipelineReg1")->getEventResult("DFFD"), "PipelineReg1", number_bits_per_flit); getEventResult("ReadBuffer")->addSubResult(getSubInstance("PipelineReg1")->getEventResult("DFFQ"), "PipelineReg1", number_bits_per_flit); getEventResult("ReadBuffer")->addSubResult(getSubInstance("PipelineReg1")->getEventResult("CK"), "PipelineReg1", number_bits_per_flit); // Add crossbar traversal event for(unsigned int i = 1; i <= number_output_ports; ++i) { Result* traverse_crossbar_event = getEventResult("TraverseCrossbar->Multicast" + (String)i); traverse_crossbar_event->addSubResult(getSubInstance("Crossbar_Sel_DFF")->getEventResult("DFFD"), "Crossbar_Sel_DFF", number_crossbar_selects); traverse_crossbar_event->addSubResult(getSubInstance("Crossbar_Sel_DFF")->getEventResult("DFFQ"), "Crossbar_Sel_DFF", number_crossbar_selects); traverse_crossbar_event->addSubResult(getSubInstance("Crossbar_Sel_DFF")->getEventResult("CK"), "Crossbar_Sel_DFF", number_crossbar_selects); traverse_crossbar_event->addSubResult(getSubInstance("Crossbar")->getEventResult("Multicast" + (String)i), "Crossbar", 1.0); for(unsigned int j = 0; j < i; ++j) { traverse_crossbar_event->addSubResult(getSubInstance("PipelineReg2_" + (String)j)->getEventResult("DFFD"), "PipelineReg2_" + (String)j, number_bits_per_flit); traverse_crossbar_event->addSubResult(getSubInstance("PipelineReg2_" + (String)j)->getEventResult("DFFQ"), "PipelineReg2_" + (String)j, number_bits_per_flit); traverse_crossbar_event->addSubResult(getSubInstance("PipelineReg2_" + (String)j)->getEventResult("CK"), "PipelineReg2_" + (String)j, number_bits_per_flit); } } // Add stage1 allocator arbitrate Result* arb_sw_stage1_event = getEventResult("ArbitrateSwitch->ArbitrateStage1"); arb_sw_stage1_event->addSubResult(getSubInstance("SwitchAllocator")->getEventResult("ArbitrateStage1"), "SwitchAllocator", 1.0); // Add stage2 allocator arbitrate Result* arb_sw_stage2_event = getEventResult("ArbitrateSwitch->ArbitrateStage2"); arb_sw_stage2_event->addSubResult(getSubInstance("SwitchAllocator")->getEventResult("ArbitrateStage2"), "SwitchAllocator", 1.0); // Add CK event getEventResult("DistributeClock")->addSubResult(getSubInstance("ClockTree")->getEventResult("Send"), "ClockTree", 1.0); return; } void Router::updateModel() { // Get parameters unsigned int number_output_ports = getParameter("NumberOutputPorts").toUInt(); // Update other components getSubInstance("PipelineReg0")->update(); getSubInstance("InputPort")->update(); getSubInstance("PipelineReg1")->update(); getSubInstance("Crossbar_Sel_DFF")->update(); getSubInstance("Crossbar")->update(); for(unsigned int i = 0; i < number_output_ports; ++i) { getSubInstance("PipelineReg2_" + (String)i)->update(); } getSubInstance("SwitchAllocator")->update(); // Update clock tree double total_clock_tree_cap = getNet("CK")->getTotalDownstreamCap(); double router_area = getAreaResult("Active")->calculateSum(); Model* clock_tree = getSubInstance("ClockTree"); clock_tree->setProperty("SitePitch", sqrt(router_area)); clock_tree->setProperty("TotalLoadCapPerBit", total_clock_tree_cap); clock_tree->update(); return; } void Router::propagateTransitionInfo() { // Update probability unsigned int number_output_ports = getParameter("NumberOutputPorts"); // Current event const String& current_event = getGenProperties()->get("UseModelEvent"); ElectricalModel* pipeline_reg0 = (ElectricalModel*)getSubInstance("PipelineReg0"); propagatePortTransitionInfo(pipeline_reg0, "D", "FlitIn0"); propagatePortTransitionInfo(pipeline_reg0, "CK", "CK"); pipeline_reg0->use(); ElectricalModel* input_port = (ElectricalModel*)getSubInstance("InputPort"); propagatePortTransitionInfo(input_port, "FlitIn", pipeline_reg0, "Q"); propagatePortTransitionInfo(input_port, "CK", "CK"); input_port->getGenProperties()->set("UseModelEvent", "ReadWrite"); input_port->use(); ElectricalModel* pipeline_reg1 = (ElectricalModel*)getSubInstance("PipelineReg1"); propagatePortTransitionInfo(pipeline_reg1, "D", "FlitIn0"); propagatePortTransitionInfo(pipeline_reg1, "CK", "CK"); pipeline_reg1->use(); ElectricalModel* crossbar_sel_dff = (ElectricalModel*)getSubInstance("Crossbar_Sel_DFF"); assignPortTransitionInfo(crossbar_sel_dff, "D", TransitionInfo()); propagatePortTransitionInfo(crossbar_sel_dff, "CK", "CK"); crossbar_sel_dff->use(); ElectricalModel* crossbar = (ElectricalModel*)getSubInstance("Crossbar"); bool is_crossbar_event = false; for(unsigned int i = 1; i <= number_output_ports; ++i) { if(current_event == ("TraverseCrossbar->Multicast" + (String)i)) { is_crossbar_event = true; // Assume the flit is sent from port 0 to port 0~i-1 // Apply default transition info crossbar->applyTransitionInfo("Multicast" + (String)i); // Overwrite transition info propagatePortTransitionInfo(crossbar, "In0", "FlitIn0"); break; } } if(is_crossbar_event == false) { crossbar->applyTransitionInfo("Multicast1"); propagatePortTransitionInfo(crossbar, "In0", "FlitIn0"); } crossbar->use(); vector pipeline_reg2s(number_output_ports, NULL); for(unsigned int i = 0; i < number_output_ports; ++i) { pipeline_reg2s[i] = (ElectricalModel*)getSubInstance("PipelineReg2_" + (String)i); propagatePortTransitionInfo(pipeline_reg2s[i], "D", "FlitIn0"); propagatePortTransitionInfo(pipeline_reg2s[i], "CK", "CK"); pipeline_reg2s[i]->use(); } ElectricalModel* sw_allocator = (ElectricalModel*)getSubInstance("SwitchAllocator"); if(current_event == "ArbitrateSwitch->ArbitrateStage1") { sw_allocator->applyTransitionInfo("ArbitrateStage1"); } else if(current_event == "ArbitrateSwitch->ArbitrateStage2") { sw_allocator->applyTransitionInfo("ArbitrateStage2"); } else { sw_allocator->applyTransitionInfo("Idle"); } sw_allocator->use(); ElectricalModel* clock_tree = (ElectricalModel*)getSubInstance("ClockTree"); propagatePortTransitionInfo(clock_tree, "In", "CK"); clock_tree->use(); return; } void Router::createRouterInputPort() { // Get parameters unsigned int number_input_ports = getParameter("NumberInputPorts").toUInt(); unsigned int number_vns = getParameter("NumberVirtualNetworks").toUInt(); const String& number_vcs_per_vn = getParameter("NumberVirtualChannelsPerVirtualNetwork"); const String& number_bufs_per_vc = getParameter("NumberBuffersPerVirtualChannel"); unsigned int number_bits_per_flit = getParameter("NumberBitsPerFlit").toUInt(); const String& buffer_model = getParameter("InputPort->BufferModel"); // Init input port model const String& input_port_name = "InputPort"; RouterInputPort* input_port = new RouterInputPort(input_port_name, getTechModel()); input_port->setParameter("NumberVirtualNetworks", number_vns); input_port->setParameter("NumberVirtualChannelsPerVirtualNetwork", number_vcs_per_vn); input_port->setParameter("NumberBuffersPerVirtualChannel", number_bufs_per_vc); input_port->setParameter("NumberBitsPerFlit", number_bits_per_flit); input_port->setParameter("BufferModel", buffer_model); input_port->construct(); unsigned int number_input_port_outputs = input_port->getGenProperties()->get("NumberOutputs"); unsigned int number_input_port_addr_bits = input_port->getGenProperties()->get("NumberAddressBits"); getGenProperties()->set("InputPort->NumberOutputs", number_input_port_outputs); getGenProperties()->set("InputPort->NumberAddressBits", number_input_port_addr_bits); unsigned int total_number_vcs = input_port->getGenProperties()->get("TotalNumberVirtualChannels"); getGenProperties()->set("TotalNumberVirtualChannels", total_number_vcs); // Add the instance and the results addSubInstances(input_port, number_input_ports); addElectricalSubResults(input_port, number_input_ports); // Create connections createNet("InputPort_In", makeNetIndex(0, number_bits_per_flit-1)); createNet("InputPort_Out", makeNetIndex(0, number_bits_per_flit-1)); assignVirtualFanout("InputPort_In", "PipelineReg0_Out"); portConnect(input_port, "FlitIn", "InputPort_In"); portConnect(input_port, "CK", "CK"); portConnect(input_port, "FlitOut", "InputPort_Out"); assignVirtualFanin("PipelineReg1_In", "InputPort_Out"); return; } void Router::createVirtualChannelAllocator() {} void Router::createSwitchAllocator() { // Get parameters unsigned int number_input_ports = getParameter("NumberInputPorts").toUInt(); unsigned int number_output_ports = getParameter("NumberOutputPorts").toUInt(); unsigned int total_number_vcs = getGenProperties()->get("TotalNumberVirtualChannels").toUInt(); const String& arb_model = getParameter("SwitchAllocator->ArbiterModel"); // Init switch allocator model const String& sw_allocator_name = "SwitchAllocator"; RouterSwitchAllocator* sw_allocator = new RouterSwitchAllocator(sw_allocator_name, getTechModel()); sw_allocator->setParameter("NumberInputPorts", number_input_ports); sw_allocator->setParameter("NumberOutputPorts", number_output_ports); sw_allocator->setParameter("TotalNumberVirtualChannels", total_number_vcs); sw_allocator->setParameter("ArbiterModel", arb_model); sw_allocator->construct(); // Add the instance and the results addSubInstances(sw_allocator, 1.0); addElectricalSubResults(sw_allocator, 1.0); // Create connections (currently connect CK only) portConnect(sw_allocator, "CK", "CK"); return; } void Router::createCrossbar() { // Get parameters const String& crossbar_model = getParameter("CrossbarModel"); unsigned int number_input_ports = getParameter("NumberInputPorts").toUInt(); unsigned int number_output_ports = getParameter("NumberOutputPorts").toUInt(); unsigned int number_bits_per_flit = getParameter("NumberBitsPerFlit").toUInt(); unsigned int number_input_port_outputs = getGenProperties()->get("InputPort->NumberOutputs").toUInt(); unsigned int number_crossbar_inputs = number_input_port_outputs * number_input_ports; unsigned int number_crossbar_outputs = number_output_ports; getGenProperties()->set("Crossbar->NumberInputs", number_crossbar_inputs); getGenProperties()->set("Crossbar->NumberOutputs", number_crossbar_outputs); // Init crossbar model const String& crossbar_name = "Crossbar"; ElectricalModel* crossbar = ModelGen::createCrossbar(crossbar_model, crossbar_name, getTechModel()); crossbar->setParameter("NumberInputs", number_crossbar_inputs); crossbar->setParameter("NumberOutputs", number_crossbar_outputs); crossbar->setParameter("NumberBits", number_bits_per_flit); crossbar->setParameter("BitDuplicate", "TRUE"); crossbar->construct(); unsigned int number_crossbar_selects = crossbar->getGenProperties()->get("NumberSelectsPerPort"); getGenProperties()->set("Crossbar->NumberSelects", number_crossbar_selects); // Init DFF for crossbar selections const String& crossbar_sel_dff_name = "Crossbar_Sel_DFF"; StdCell* crossbar_sel_dff = getTechModel()->getStdCellLib()->createStdCell("DFFQ", crossbar_sel_dff_name); crossbar_sel_dff->construct(); // Add instances and results addSubInstances(crossbar, 1.0); addElectricalSubResults(crossbar, 1.0); addSubInstances(crossbar_sel_dff, number_crossbar_outputs * number_crossbar_selects); addElectricalSubResults(crossbar_sel_dff, number_crossbar_outputs * number_crossbar_selects); // Create connections createNet("Crossbar_Sel_DFF_Out"); for(unsigned int i = 0; i < number_crossbar_outputs; ++i) { for(unsigned int j = 0; j < number_crossbar_selects; ++j) { createNet(String::format("Crossbar_Sel%d_%d", i, j)); } createNet("Crossbar_Out" + (String)i, makeNetIndex(0, number_bits_per_flit-1)); } for(unsigned int i = 0; i < number_crossbar_inputs; ++i) { createNet("Crossbar_In" + (String)i, makeNetIndex(0, number_bits_per_flit-1)); } for(unsigned int i = 0; i < number_crossbar_selects; ++i) { portConnect(crossbar_sel_dff, "CK", "CK"); } portConnect(crossbar_sel_dff, "Q", "Crossbar_Sel_DFF_Out"); for(unsigned int i = 0; i < number_crossbar_inputs; ++i) { assignVirtualFanout("Crossbar_In" + (String)i, "PipelineReg1_Out"); portConnect(crossbar, "In" + (String)i, "Crossbar_In" + (String)i); } for(unsigned int i = 0; i < number_crossbar_outputs; ++i) { for(unsigned int j = 0; j < number_crossbar_selects; ++j) { assignVirtualFanout(String::format("Crossbar_Sel%d_%d", i, j), "Crossbar_Sel_DFF_Out"); portConnect(crossbar, String::format("Sel%d_%d", i, j), String::format("Crossbar_Sel%d_%d", i, j)); } portConnect(crossbar, "Out" + (String)i, "Crossbar_Out" + (String)i); assignVirtualFanin("PipelineReg2_In" + (String)i, "Crossbar_Out" + (String)i); } return; } void Router::createPipelineReg() { // Get parameters unsigned int number_input_ports = getParameter("NumberInputPorts").toUInt(); unsigned int number_output_ports = getParameter("NumberOutputPorts").toUInt(); unsigned int number_bits_per_flit = getParameter("NumberBitsPerFlit").toUInt(); unsigned int number_crossbar_inputs = getGenProperties()->get("Crossbar->NumberInputs"); // Init pipeline reg model // First stage: from router input to input port const String& pipeline_reg0_name = "PipelineReg0"; StdCell* pipeline_reg0 = getTechModel()->getStdCellLib()->createStdCell("DFFQ", pipeline_reg0_name); pipeline_reg0->construct(); // Second stage: from input port to crossbar const String& pipeline_reg1_name = "PipelineReg1"; StdCell* pipeline_reg1 = getTechModel()->getStdCellLib()->createStdCell("DFFQ", pipeline_reg1_name); pipeline_reg1->construct(); // Third stage: from crossbar to router output vector pipeline_reg2s(number_output_ports, (StdCell*)NULL); vector pipeline_reg2_names(number_output_ports, ""); for(unsigned int i = 0; i < number_output_ports; ++i) { pipeline_reg2_names[i] = "PipelineReg2_" + (String)i; pipeline_reg2s[i] = getTechModel()->getStdCellLib()->createStdCell("DFFQ", pipeline_reg2_names[i]); pipeline_reg2s[i]->construct(); } // Add instances and results addSubInstances(pipeline_reg0, number_input_ports * number_bits_per_flit); addElectricalSubResults(pipeline_reg0, number_input_ports * number_bits_per_flit); addSubInstances(pipeline_reg1, number_crossbar_inputs * number_bits_per_flit); addElectricalSubResults(pipeline_reg1, number_crossbar_inputs * number_bits_per_flit); for(unsigned int i = 0; i < number_output_ports; ++i) { addSubInstances(pipeline_reg2s[i], number_bits_per_flit); addElectricalSubResults(pipeline_reg2s[i], number_bits_per_flit); } // Create data connections for(unsigned int i = 0; i < number_input_ports; ++i) { assignVirtualFanin("PipelineReg0_In", "FlitIn" + (String)i); } portConnect(pipeline_reg0, "D", "PipelineReg0_In"); portConnect(pipeline_reg0, "Q", "PipelineReg0_Out"); portConnect(pipeline_reg1, "D", "PipelineReg1_In"); portConnect(pipeline_reg1, "Q", "PipelineReg1_Out"); for(unsigned int i = 0; i < number_output_ports; ++i) { portConnect(pipeline_reg2s[i], "D", "PipelineReg2_In" + (String)i); portConnect(pipeline_reg2s[i], "Q", "PipelineReg2_Out" + (String)i); assignVirtualFanout("FlitOut" + (String)i, "PipelineReg2_Out" + (String)i); } // Create CK connections for(unsigned int n = 0; n < number_bits_per_flit; ++n) { for(unsigned int i = 0; i < number_input_ports; ++i) { portConnect(pipeline_reg0, "CK", "CK"); } for(unsigned int i = 0; i < number_crossbar_inputs; ++i) { portConnect(pipeline_reg1, "CK", "CK"); } for(unsigned int i = 0; i < number_output_ports; ++i) { portConnect(pipeline_reg2s[i], "CK", "CK"); } } return; } void Router::createClockTree() { // Get parameters const String& clock_tree_model = getParameter("ClockTreeModel"); const String& clock_tree_number_levels = getParameter("ClockTree->NumberLevels"); const String& clock_tree_wire_layer = getParameter("ClockTree->WireLayer"); const String& clock_tree_wire_width_multiplier = getParameter("ClockTree->WireWidthMultiplier"); const String& clock_tree_wire_spacing_multiplier = getParameter("ClockTree->WireSpacingMultiplier"); // Init clock tree model const String& clock_tree_name = "ClockTree"; ElectricalModel* clock_tree = (ElectricalModel*)ModelGen::createModel(clock_tree_model, clock_tree_name, getTechModel()); clock_tree->setParameter("NumberLevels", clock_tree_number_levels); clock_tree->setParameter("NumberBits", 1); clock_tree->setParameter("WireLayer", clock_tree_wire_layer); clock_tree->setParameter("WireWidthMultiplier", clock_tree_wire_width_multiplier); clock_tree->setParameter("WireSpacingMultiplier", clock_tree_wire_spacing_multiplier); clock_tree->construct(); // Add instances and results addSubInstances(clock_tree, 1.0); addElectricalSubResults(clock_tree, 1.0); return; } } // namespace DSENT