/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji, Sven Goossens * */ #include #include #include #include "CommandAnalysis.h" #include "CmdScheduler.h" using namespace Data; using namespace std; bool commandSorter(const MemCommand& i, const MemCommand& j) { if (i.getTimeInt64() == j.getTimeInt64()) { return i.getType() == MemCommand::PRE && j.getType() != MemCommand::PRE; } else { return i.getTimeInt64() < j.getTimeInt64(); } } CommandAnalysis::CommandAnalysis(const int64_t nbrofBanks) { // Initializing all counters and variables clearStats(0); zero = 0; bankstate.resize(static_cast(nbrofBanks), 0); last_states.resize(static_cast(nbrofBanks)); mem_state = 0; num_active_banks = 0; cmd_list.clear(); cached_cmd.clear(); activation_cycle.resize(static_cast(nbrofBanks), 0); } // function to clear counters void CommandAnalysis::clearStats(const int64_t timestamp) { numberofacts = 0; numberofpres = 0; numberofreads = 0; numberofwrites = 0; numberofrefs = 0; f_act_pdns = 0; s_act_pdns = 0; f_pre_pdns = 0; s_pre_pdns = 0; numberofsrefs = 0; actcycles = 0; precycles = 0; f_act_pdcycles = 0; s_act_pdcycles = 0; f_pre_pdcycles = 0; s_pre_pdcycles = 0; pup_act_cycles = 0; pup_pre_cycles = 0; sref_cycles = 0; spup_cycles = 0; sref_ref_act_cycles = 0; sref_ref_pre_cycles = 0; spup_ref_act_cycles = 0; spup_ref_pre_cycles = 0; idlecycles_act = 0; idlecycles_pre = 0; // reset count references to timestamp so that they are moved // to start of next stats generation first_act_cycle = timestamp; last_pre_cycle = timestamp; pdn_cycle = timestamp; sref_cycle = timestamp; end_act_op = timestamp; end_read_op = timestamp; end_write_op = timestamp; latest_act_cycle = -1; latest_read_cycle = -1; latest_write_cycle = -1; if (timestamp == 0) { // set to -1 at beginning of simulation latest_pre_cycle = -1; } else { // NOTE: reference is adjusted by tRP (PRE delay) when updating counter // could remove tRP to ensure counter starts at beginning of next block; // currently simply setting to timestamp for simplicity latest_pre_cycle = timestamp; } } // function to clear all arrays void CommandAnalysis::clear() { cached_cmd.clear(); cmd_list.clear(); last_states.clear(); bankstate.clear(); } // Reads through the trace file, identifies the timestamp, command and bank // If the issued command includes an auto-precharge, adds an explicit // precharge to a cached command list and computes the precharge offset from the // issued command timestamp, when the auto-precharge would kick in void CommandAnalysis::getCommands(const Data::MemorySpecification& memSpec, std::vector& list, bool lastupdate) { for (size_t i = 0; i < list.size(); ++i) { MemCommand& cmd = list[i]; MemCommand::cmds cmdType = cmd.getType(); if (cmdType == MemCommand::ACT) { activation_cycle[cmd.getBank()] = cmd.getTimeInt64(); } else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) { // Remove auto-precharge flag from command cmd.setType(cmd.typeWithoutAutoPrechargeFlag()); // Add the auto precharge to the list of cached_cmds int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType), activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS); list.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), preTime)); } } sort(list.begin(), list.end(), commandSorter); if (lastupdate && list.empty() == false) { // Add cycles at the end of the list int64_t t = timeToCompletion(memSpec, list.back().getType()) + list.back().getTimeInt64() - 1; list.push_back(MemCommand(MemCommand::NOP, 0, t)); } evaluate(memSpec, list); } // CommandAnalysis::getCommands // To get the time of completion of the issued command // Derived based on JEDEC specifications int64_t CommandAnalysis::timeToCompletion(const MemorySpecification& memSpec, MemCommand::cmds type) { int64_t offset = 0; const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; if (type == MemCommand::RD) { offset = memTimingSpec.RL + memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength / memArchSpec.dataRate); } else if (type == MemCommand::WR) { offset = memTimingSpec.WL + (memArchSpec.burstLength / memArchSpec.dataRate) + memTimingSpec.WR; } else if (type == MemCommand::ACT) { offset = memTimingSpec.RCD; } else if ((type == MemCommand::PRE) || (type == MemCommand::PREA)) { offset = memTimingSpec.RP; } return offset; } // CommandAnalysis::timeToCompletion // Used to analyse a given list of commands and identify command timings // and memory state transitions void CommandAnalysis::evaluate(const MemorySpecification& memSpec, vector& cmd_list) { // for each command identify timestamp, type and bank for (auto cmd : cmd_list) { // For command type int type = cmd.getType(); // For command bank int bank = static_cast(cmd.getBank()); // Command Issue timestamp in clock cycles (cc) int64_t timestamp = cmd.getTimeInt64(); if (type == MemCommand::ACT) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is ACT - update number of acts, bank state of the // target bank, first and latest activation cycle and the memory // state. Update the number of precharged/idle-precharged cycles. numberofacts++; if (bankstate[static_cast(bank)] == 1) { printWarning("Bank is already active!", type, timestamp, bank); } bankstate[static_cast(bank)] = 1; if (num_active_banks == 0) { first_act_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } latest_act_cycle = timestamp; num_active_banks++; } else if (type == MemCommand::RD) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is RD - update number of reads and read cycle. Check // for active idle cycles (if any). if (bankstate[static_cast(bank)] == 0) { printWarning("Bank is not active!", type, timestamp, bank); } numberofreads++; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_read_cycle = timestamp; } else if (type == MemCommand::WR) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is WR - update number of writes and write cycle. Check // for active idle cycles (if any). if (bankstate[static_cast(bank)] == 0) { printWarning("Bank is not active!", type, timestamp, bank); } numberofwrites++; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_write_cycle = timestamp; } else if (type == MemCommand::REF) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is REF - update number of refreshes, set bank state of // all banks to ACT, set the last PRE cycles at RFC-RP cycles from // timestamp, set the number of active cycles to RFC-RP and check // for active and precharged cycles and idle active and idle // precharged cycles before refresh. Change memory state to 0. printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", type, timestamp, bank); numberofrefs++; idle_pre_update(memSpec, timestamp, latest_pre_cycle); first_act_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; latest_pre_cycle = last_pre_cycle; actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; num_active_banks = 0; for (auto& b : bankstate) { b = 0; } } else if (type == MemCommand::PRE) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is explicit PRE - update number of precharges, bank // state of the target bank and last and latest precharge cycle. // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now. // If not, update the number of precharged cycles and idle cycles. // Update memory state if needed. if (bankstate[static_cast(bank)] == 1) { numberofpres++; } bankstate[static_cast(bank)] = 0; if (num_active_banks == 1) { actcycles += max(zero, timestamp - first_act_cycle); last_pre_cycle = timestamp; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (num_active_banks == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); last_pre_cycle = timestamp; } latest_pre_cycle = timestamp; if (num_active_banks > 0) { num_active_banks--; } else { num_active_banks = 0; } } else if (type == MemCommand::PREA) { printWarningIfPoweredDown("Command issued while in power-down mode.", type, timestamp, bank); // If command is explicit PREA (precharge all banks) - update // number of precharges by the number of banks, update the bank // state of all banks to PRE and set the precharge cycle. // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now. // If not, update the number of precharged cycles and idle cycles. numberofpres += num_active_banks; if (num_active_banks > 0) { actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (num_active_banks == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } latest_pre_cycle = timestamp; last_pre_cycle = timestamp; num_active_banks = 0; for (auto& b : bankstate) { b = 0; } } else if (type == MemCommand::PDN_F_ACT) { // If command is fast-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); f_act_pdns++; last_states = bankstate; pdn_cycle = timestamp; actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_F_ACT; } else if (type == MemCommand::PDN_S_ACT) { // If command is slow-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); s_act_pdns++; last_states = bankstate; pdn_cycle = timestamp; actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_S_ACT; } else if (type == MemCommand::PDN_F_PRE) { // If command is fast-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); f_pre_pdns++; pdn_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_F_PRE; } else if (type == MemCommand::PDN_S_PRE) { // If command is slow-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); s_pre_pdns++; pdn_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_S_PRE; } else if (type == MemCommand::PUP_ACT) { // If command is power-up in the active mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and first act cycle. Also, reset // all the individual bank states to the respective saved states // before entering power-down. if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += max(zero, timestamp - pdn_cycle); pup_act_cycles += memSpec.memTimingSpec.XP; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += max(zero, timestamp - pdn_cycle); if (memSpec.memArchSpec.dll == false) { pup_act_cycles += memSpec.memTimingSpec.XP; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); } else { pup_act_cycles += memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XPDLL - (2 * memSpec.memTimingSpec.RCD)); } } else if (mem_state != CommandAnalysis::MS_PDN_S_ACT || mem_state != CommandAnalysis::MS_PDN_F_ACT) { cerr << "Incorrect use of Active Power-Up!" << endl; } num_active_banks = 0; mem_state = 0; bankstate = last_states; for (auto& a : last_states) { num_active_banks += static_cast(a); } first_act_cycle = timestamp; } else if (type == MemCommand::PUP_PRE) { // If command is power-up in the precharged mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and last pre cycle. if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += max(zero, timestamp - pdn_cycle); pup_pre_cycles += memSpec.memTimingSpec.XP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += max(zero, timestamp - pdn_cycle); if (memSpec.memArchSpec.dll == false) { pup_pre_cycles += memSpec.memTimingSpec.XP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); } else { pup_pre_cycles += memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD - memSpec.memTimingSpec.RP); } } else if (mem_state != CommandAnalysis::MS_PDN_S_PRE || mem_state != CommandAnalysis::MS_PDN_F_PRE) { cerr << "Incorrect use of Precharged Power-Up!" << endl; } mem_state = 0; num_active_banks = 0; last_pre_cycle = timestamp; } else if (type == MemCommand::SREN) { // If command is self-refresh - update number of self-refreshes, // set memory state to SREF, update precharge and idle precharge // cycles and set the self-refresh cycle. printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", type, timestamp, bank); numberofsrefs++; sref_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_SREF; } else if (type == MemCommand::SREX) { // If command is self-refresh exit - update the number of self-refresh // clock cycles, number of active and precharged auto-refresh clock // cycles during self-refresh and self-refresh exit based on the number // of cycles in the self-refresh mode and auto-refresh duration (RFC). // Set the last and latest precharge cycle accordingly and set the // memory state to 0. if (mem_state != CommandAnalysis::MS_SREF) { cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; } if (max(zero, timestamp - sref_cycle) >= memSpec.memTimingSpec.RFC) { sref_cycles += max(zero, timestamp - sref_cycle - memSpec.memTimingSpec.RFC); sref_ref_act_cycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; sref_ref_pre_cycles += memSpec.memTimingSpec.RP; last_pre_cycle = timestamp; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - memSpec.memTimingSpec.RP); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - memSpec.memTimingSpec.RP); } } else { int64_t sref_diff = memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; int64_t sref_pre = max(zero, timestamp - sref_cycle - sref_diff); int64_t spup_pre = memSpec.memTimingSpec.RP - sref_pre; int64_t sref_act = max(zero, timestamp - sref_cycle); int64_t spup_act = memSpec.memTimingSpec.RFC - sref_act; if (max(zero, timestamp - sref_cycle) >= sref_diff) { sref_ref_act_cycles += sref_diff; sref_ref_pre_cycles += sref_pre; spup_ref_pre_cycles += spup_pre; last_pre_cycle = timestamp + spup_pre; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS - spup_pre; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - spup_pre - memSpec.memTimingSpec.RP); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_pre; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_pre - memSpec.memTimingSpec.RP); } } else { sref_ref_act_cycles += sref_act; spup_ref_act_cycles += spup_act; spup_ref_pre_cycles += memSpec.memTimingSpec.RP; last_pre_cycle = timestamp + spup_act + memSpec.memTimingSpec.RP; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS - spup_act - memSpec.memTimingSpec.RP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - spup_act - (2 * memSpec.memTimingSpec.RP)); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_act - memSpec.memTimingSpec.RP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_act - (2 * memSpec.memTimingSpec.RP)); } } } mem_state = 0; num_active_banks = 0; } else if (type == MemCommand::END || type == MemCommand::NOP) { // May be optionally used at the end of memory trace for better accuracy // Update all counters based on completion of operations. if (num_active_banks > 0 && mem_state == 0) { actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (num_active_banks == 0 && mem_state == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_SREF) { sref_cycles += max(zero, timestamp - sref_cycle); } } else { printWarning("Unknown command given, exiting.", type, timestamp, bank); exit(-1); } } } // CommandAnalysis::evaluate // To update idle period information whenever active cycles may be idle void CommandAnalysis::idle_act_update(const MemorySpecification& memSpec, int64_t latest_read_cycle, int64_t latest_write_cycle, int64_t latest_act_cycle, int64_t timestamp) { if (latest_read_cycle >= 0) { end_read_op = latest_read_cycle + timeToCompletion(memSpec, MemCommand::RD) - 1; } if (latest_write_cycle >= 0) { end_write_op = latest_write_cycle + timeToCompletion(memSpec, MemCommand::WR) - 1; } if (latest_act_cycle >= 0) { end_act_op = latest_act_cycle + timeToCompletion(memSpec, MemCommand::ACT) - 1; } idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op), end_act_op)); } // CommandAnalysis::idle_act_update // To update idle period information whenever precharged cycles may be idle void CommandAnalysis::idle_pre_update(const MemorySpecification& memSpec, int64_t timestamp, int64_t latest_pre_cycle) { if (latest_pre_cycle > 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle - memSpec.memTimingSpec.RP); } else if (latest_pre_cycle == 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle); } } void CommandAnalysis::printWarningIfActive(const string& warning, int type, int64_t timestamp, int bank) { if (num_active_banks != 0) { printWarning(warning, type, timestamp, bank); } } void CommandAnalysis::printWarningIfNotActive(const string& warning, int type, int64_t timestamp, int bank) { if (num_active_banks == 0) { printWarning(warning, type, timestamp, bank); } } void CommandAnalysis::printWarningIfPoweredDown(const string& warning, int type, int64_t timestamp, int bank) { if (mem_state != 0) { printWarning(warning, type, timestamp, bank); } } void CommandAnalysis::printWarning(const string& warning, int type, int64_t timestamp, int bank) { cerr << "WARNING: " << warning << endl; cerr << "Command: " << type << ", Timestamp: " << timestamp << ", Bank: " << bank << endl; }