/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji, Sven Goossens * */ #include #include #include #include "CommandAnalysis.h" #include "CmdScheduler.h" using namespace Data; using namespace std; CommandAnalysis::CommandAnalysis() { } CommandAnalysis::CommandAnalysis(const int nbrofBanks) { // Initializing all counters and variables numberofacts = 0; numberofpres = 0; numberofreads = 0; numberofwrites = 0; numberofrefs = 0; f_act_pdns = 0; s_act_pdns = 0; f_pre_pdns = 0; s_pre_pdns = 0; numberofsrefs = 0; pop = 0; init = 0; zero = 0; actcycles = 0; precycles = 0; f_act_pdcycles = 0; s_act_pdcycles = 0; f_pre_pdcycles = 0; s_pre_pdcycles = 0; pup_act_cycles = 0; pup_pre_cycles = 0; sref_cycles = 0; spup_cycles = 0; sref_ref_act_cycles = 0; sref_ref_pre_cycles = 0; spup_ref_act_cycles = 0; spup_ref_pre_cycles = 0; idlecycles_act = 0; idlecycles_pre = 0; latest_act_cycle = -1; latest_pre_cycle = -1; latest_read_cycle = -1; latest_write_cycle = -1; end_read_op = 0; end_write_op = 0; end_act_op = 0; first_act_cycle = 0; last_pre_cycle = 0; bankstate.resize(nbrofBanks, 0); last_states.resize(nbrofBanks); mem_state = 0; sref_cycle = 0; pdn_cycle = 0; cmd_list.clear(); full_cmd_list.resize(1, MemCommand::PRE); cached_cmd.clear(); activation_cycle.resize(nbrofBanks, 0); } // function to clear all arrays void CommandAnalysis::clear() { cached_cmd.clear(); cmd_list.clear(); full_cmd_list.clear(); last_states.clear(); bankstate.clear(); } // Reads through the trace file, identifies the timestamp, command and bank // If the issued command includes an auto-precharge, adds an explicit // precharge to a cached command list and computes the precharge offset from the // issued command timestamp, when the auto-precharge would kick in void CommandAnalysis::getCommands(const Data::MemorySpecification& memSpec, const int nbrofBanks, std::vector& list, bool lastupdate) { for (vector::const_iterator i = list.begin(); i != list.end(); ++i) { const MemCommand& cmd = *i; cmd_list.push_back(cmd); MemCommand::cmds cmdType = cmd.getType(); if (cmdType == MemCommand::ACT) { activation_cycle[cmd.getBank()] = cmd.getTimeInt64(); } else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) { // Remove auto-precharge flag from command cmd_list.back().setType(cmd.typeWithoutAutoPrechargeFlag()); // Add the auto precharge to the list of cached_cmds int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType), activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS); cached_cmd.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), static_cast(preTime))); } } pop = 0; // Note: the extra pre-cmds at the end of the lists, and the cast to double // of the size vector is probably not desirable. cmd_list.push_back(MemCommand::PRE); cached_cmd.push_back(MemCommand::PRE); analyse_commands(nbrofBanks, memSpec, cmd_list.size()-1, cached_cmd.size()-1, lastupdate); cmd_list.clear(); cached_cmd.clear(); } // CommandAnalysis::getCommands // Checks the auto-precharge cached command list and inserts the explicit // precharges with the appropriate timestamp in the original command list // (by merging) based on their offset from the issuing command. Calls the // evaluate function to analyse this expanded list of commands. void CommandAnalysis::analyse_commands(const int nbrofBanks, Data::MemorySpecification memSpec, int64_t nCommands, int64_t nCached, bool lastupdate) { full_cmd_list.resize(1, MemCommand::PRE); unsigned mCommands = 0; unsigned mCached = 0; for (unsigned i = 0; i < nCommands + nCached + 1; i++) { if (cached_cmd.size() > 1) { if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) { full_cmd_list[i].setType(MemCommand::PREA); init = 1; pop = 1; } else { init = 1; if ((cached_cmd[mCached].getTime() > 0) && (cmd_list. at(mCommands).getTime() < cached_cmd[mCached]. getTime()) && ((cmd_list[mCommands].getTime() > 0) || ((cmd_list[mCommands].getTime() == 0) && (cmd_list[mCommands]. getType() != MemCommand::PRE)))) { full_cmd_list[i] = cmd_list[mCommands]; mCommands++; } else if ((cached_cmd[mCached].getTime() > 0) && (cmd_list[mCommands]. getTime() >= cached_cmd[mCached].getTime())) { full_cmd_list[i] = cached_cmd[mCached]; mCached++; } else if (cached_cmd[mCached].getTime() == 0) { if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list[mCommands]. getTime() == 0) && (cmd_list[mCommands]. getType() != MemCommand::PRE))) { full_cmd_list[i] = cmd_list[mCommands]; mCommands++; } } else if (cmd_list[mCommands].getTime() == 0) { full_cmd_list[i] = cached_cmd[mCached]; mCached++; } } } else { if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) { full_cmd_list[i].setType(MemCommand::PREA); init = 1; pop = 1; } else { init = 1; if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list. at(mCommands).getTime() == 0) && (cmd_list[mCommands]. getType() != MemCommand::PRE))) { full_cmd_list[i] = cmd_list[mCommands]; mCommands++; } } } full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::PRE); } full_cmd_list.pop_back(); if (pop == 0) { full_cmd_list.pop_back(); } if (lastupdate) { full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::NOP); full_cmd_list[full_cmd_list.size() - 1].setTime(full_cmd_list [full_cmd_list.size() - 2].getTime() + timeToCompletion(memSpec, full_cmd_list[full_cmd_list.size() - 2].getType()) - 1); } evaluate(memSpec, full_cmd_list, nbrofBanks); } // CommandAnalysis::analyse_commands // To get the time of completion of the issued command // Derived based on JEDEC specifications int CommandAnalysis::timeToCompletion(const MemorySpecification& memSpec, MemCommand::cmds type) { int offset = 0; const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; if (type == MemCommand::RD) { offset = static_cast(memTimingSpec.RL + memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength / memArchSpec.dataRate)); } else if (type == MemCommand::WR) { offset = static_cast(memTimingSpec.WL + (memArchSpec.burstLength / memArchSpec.dataRate) + memTimingSpec.WR); } else if (type == MemCommand::ACT) { offset = static_cast(memTimingSpec.RCD); } else if ((type == MemCommand::PRE) || (type == MemCommand::PREA)) { offset = static_cast(memTimingSpec.RP); } return offset; } // CommandAnalysis::timeToCompletion // Used to analyse a given list of commands and identify command timings // and memory state transitions void CommandAnalysis::evaluate(const MemorySpecification& memSpec, vector& cmd_list, int nbrofBanks) { // for each command identify timestamp, type and bank for (unsigned cmd_list_counter = 0; cmd_list_counter < cmd_list.size(); cmd_list_counter++) { // For command type int type = cmd_list[cmd_list_counter].getType(); // For command bank int bank = cmd_list[cmd_list_counter].getBank(); // Command Issue timestamp in clock cycles (cc) int64_t timestamp = cmd_list[cmd_list_counter].getTimeInt64(); if (type == MemCommand::ACT) { // If command is ACT - update number of acts, bank state of the // target bank, first and latest activation cycle and the memory // state. Update the number of precharged/idle-precharged cycles. numberofacts++; if (bankstate[bank] == 1) { printWarning("Bank is already active!", type, timestamp, bank); } bankstate[bank] = 1; if (mem_state == 0) { first_act_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } latest_act_cycle = timestamp; mem_state++; } else if (type == MemCommand::RD) { // If command is RD - update number of reads and read cycle. Check // for active idle cycles (if any). if (bankstate[bank] == 0) { printWarning("Bank is not active!", type, timestamp, bank); } numberofreads++; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_read_cycle = timestamp; } else if (type == MemCommand::WR) { // If command is WR - update number of writes and write cycle. Check // for active idle cycles (if any). if (bankstate[bank] == 0) { printWarning("Bank is not active!", type, timestamp, bank); } numberofwrites++; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_write_cycle = timestamp; } else if (type == MemCommand::REF) { // If command is REF - update number of refreshes, set bank state of // all banks to ACT, set the last PRE cycles at RFC-RP cycles from // timestamp, set the number of active cycles to RFC-RP and check // for active and precharged cycles and idle active and idle // precharged cycles before refresh. Change memory state to 0. printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", type, timestamp, bank); numberofrefs++; idle_pre_update(memSpec, timestamp, latest_pre_cycle); first_act_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; latest_pre_cycle = last_pre_cycle; actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; mem_state = 0; for (int j = 0; j < nbrofBanks; j++) { bankstate[j] = 0; } } else if (type == MemCommand::PRE) { // If command is explicit PRE - update number of precharges, bank // state of the target bank and last and latest precharge cycle. // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now. // If not, update the number of precharged cycles and idle cycles. // Update memory state if needed. if (bankstate[bank] == 1) { numberofpres++; } bankstate[bank] = 0; if (mem_state == 1) { actcycles += max(zero, timestamp - first_act_cycle); last_pre_cycle = timestamp; idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (mem_state == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); last_pre_cycle = timestamp; } latest_pre_cycle = timestamp; if (mem_state > 0) { mem_state--; } else { mem_state = 0; } } else if (type == MemCommand::PREA) { // If command is explicit PREA (precharge all banks) - update // number of precharges by the number of banks, update the bank // state of all banks to PRE and set the precharge cycle. // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now. // If not, update the number of precharged cycles and idle cycles. if (timestamp == 0) { numberofpres += 0; } else { numberofpres += mem_state; } if (mem_state > 0) { actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (mem_state == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } latest_pre_cycle = timestamp; last_pre_cycle = timestamp; mem_state = 0; for (int j = 0; j < nbrofBanks; j++) { bankstate[j] = 0; } } else if (type == MemCommand::PDN_F_ACT) { // If command is fast-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); f_act_pdns++; for (int j = 0; j < nbrofBanks; j++) { last_states[j] = bankstate[j]; } pdn_cycle = timestamp; actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_F_ACT; } else if (type == MemCommand::PDN_S_ACT) { // If command is slow-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); s_act_pdns++; for (int j = 0; j < nbrofBanks; j++) { last_states[j] = bankstate[j]; } pdn_cycle = timestamp; actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_S_ACT; } else if (type == MemCommand::PDN_F_PRE) { // If command is fast-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); f_pre_pdns++; pdn_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_F_PRE; } else if (type == MemCommand::PDN_S_PRE) { // If command is slow-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); s_pre_pdns++; pdn_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_S_PRE; } else if (type == MemCommand::PUP_ACT) { // If command is power-up in the active mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and first act cycle. Also, reset // all the individual bank states to the respective saved states // before entering power-down. if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += max(zero, timestamp - pdn_cycle); pup_act_cycles += memSpec.memTimingSpec.XP; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += max(zero, timestamp - pdn_cycle); if (memSpec.memArchSpec.dll == false) { pup_act_cycles += memSpec.memTimingSpec.XP; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); } else { pup_act_cycles += memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD; latest_act_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XPDLL - (2 * memSpec.memTimingSpec.RCD)); } } else if ((mem_state != CommandAnalysis::MS_PDN_S_ACT) || (mem_state != CommandAnalysis::MS_PDN_F_ACT)) { cerr << "Incorrect use of Active Power-Up!" << endl; } mem_state = 0; for (int j = 0; j < nbrofBanks; j++) { bankstate[j] = last_states[j]; mem_state += last_states[j]; } first_act_cycle = timestamp; } else if (type == MemCommand::PUP_PRE) { // If command is power-up in the precharged mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and last pre cycle. if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += max(zero, timestamp - pdn_cycle); pup_pre_cycles += memSpec.memTimingSpec.XP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += max(zero, timestamp - pdn_cycle); if (memSpec.memArchSpec.dll == false) { pup_pre_cycles += memSpec.memTimingSpec.XP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); } else { pup_pre_cycles += memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD - memSpec.memTimingSpec.RP); } } else if ((mem_state != CommandAnalysis::MS_PDN_S_PRE) || (mem_state != CommandAnalysis::MS_PDN_F_PRE)) { cerr << "Incorrect use of Precharged Power-Up!" << endl; } mem_state = 0; last_pre_cycle = timestamp; } else if (type == MemCommand::SREN) { // If command is self-refresh - update number of self-refreshes, // set memory state to SREF, update precharge and idle precharge // cycles and set the self-refresh cycle. printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", type, timestamp, bank); numberofsrefs++; sref_cycle = timestamp; precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_SREF; } else if (type == MemCommand::SREX) { // If command is self-refresh exit - update the number of self-refresh // clock cycles, number of active and precharged auto-refresh clock // cycles during self-refresh and self-refresh exit based on the number // of cycles in the self-refresh mode and auto-refresh duration (RFC). // Set the last and latest precharge cycle accordingly and set the // memory state to 0. if (mem_state != CommandAnalysis::MS_SREF) { cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; } if (max(zero, timestamp - sref_cycle) >= memSpec.memTimingSpec.RFC) { sref_cycles += max(zero, timestamp - sref_cycle - memSpec.memTimingSpec.RFC); sref_ref_act_cycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; sref_ref_pre_cycles += memSpec.memTimingSpec.RP; last_pre_cycle = timestamp; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - memSpec.memTimingSpec.RP); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - memSpec.memTimingSpec.RP); } } else { int64_t sref_diff = memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; int64_t sref_pre = max(zero, timestamp - sref_cycle - sref_diff); int64_t spup_pre = memSpec.memTimingSpec.RP - sref_pre; int64_t sref_act = max(zero, timestamp - sref_cycle); int64_t spup_act = memSpec.memTimingSpec.RFC - sref_act; if (max(zero, timestamp - sref_cycle) >= sref_diff) { sref_ref_act_cycles += sref_diff; sref_ref_pre_cycles += sref_pre; spup_ref_pre_cycles += spup_pre; last_pre_cycle = timestamp + spup_pre; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS - spup_pre; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - spup_pre - memSpec.memTimingSpec.RP); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_pre; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_pre - memSpec.memTimingSpec.RP); } } else { sref_ref_act_cycles += sref_act; spup_ref_act_cycles += spup_act; spup_ref_pre_cycles += memSpec.memTimingSpec.RP; last_pre_cycle = timestamp + spup_act + memSpec.memTimingSpec.RP; if (memSpec.memArchSpec.dll == false) { spup_cycles += memSpec.memTimingSpec.XS - spup_act - memSpec.memTimingSpec.RP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XS - spup_act - (2 * memSpec.memTimingSpec.RP)); } else { spup_cycles += memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_act - memSpec.memTimingSpec.RP; latest_pre_cycle = max(timestamp, timestamp + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - spup_act - (2 * memSpec.memTimingSpec.RP)); } } } mem_state = 0; } else if ((type == MemCommand::END) || (type == MemCommand::NOP)) { // May be optionally used at the end of memory trace for better accuracy // Update all counters based on completion of operations. if ((mem_state > 0) && (mem_state < 9)) { actcycles += max(zero, timestamp - first_act_cycle); idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (mem_state == 0) { precycles += max(zero, timestamp - last_pre_cycle); idle_pre_update(memSpec, timestamp, latest_pre_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += max(zero, timestamp - pdn_cycle); } else if (mem_state == CommandAnalysis::MS_SREF) { sref_cycles += max(zero, timestamp - sref_cycle); } } } } // CommandAnalysis::evaluate // To update idle period information whenever active cycles may be idle void CommandAnalysis::idle_act_update(const MemorySpecification& memSpec, int64_t latest_read_cycle, int64_t latest_write_cycle, int64_t latest_act_cycle, int64_t timestamp) { if (latest_read_cycle >= 0) { end_read_op = latest_read_cycle + timeToCompletion(memSpec, MemCommand::RD) - 1; } if (latest_write_cycle >= 0) { end_write_op = latest_write_cycle + timeToCompletion(memSpec, MemCommand::WR) - 1; } if (latest_act_cycle >= 0) { end_act_op = latest_act_cycle + timeToCompletion(memSpec, MemCommand::ACT) - 1; } idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op), end_act_op)); } // CommandAnalysis::idle_act_update // To update idle period information whenever precharged cycles may be idle void CommandAnalysis::idle_pre_update(const MemorySpecification& memSpec, int64_t timestamp, int64_t latest_pre_cycle) { if (latest_pre_cycle > 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle - memSpec.memTimingSpec.RP); } else if (latest_pre_cycle == 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle); } } void CommandAnalysis::printWarningIfActive(const string& warning, int type, int64_t timestamp, int bank) { if (mem_state != 0) { printWarning(warning, type, timestamp, bank); } } void CommandAnalysis::printWarningIfNotActive(const string& warning, int type, int64_t timestamp, int bank) { if (mem_state == 0) { printWarning(warning, type, timestamp, bank); } } void CommandAnalysis::printWarning(const string& warning, int type, int64_t timestamp, int bank) { cerr << "WARNING: " << warning << endl; cerr << "Command: " << type << ", Timestamp: " << timestamp << ", Bank: " << bank << endl; }