Lines Matching refs:energy

57   energy.total_energy = 0;
60 // Calculate energy and average power consumption for the given command trace
72 energy.act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
73 energy.pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
74 energy.read_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
75 energy.write_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
76 energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
77 energy.refb_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
78 energy.act_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
79 energy.pre_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
80 energy.idle_energy_act_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
81 energy.idle_energy_pre_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
82 energy.f_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
83 energy.f_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
84 energy.s_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
85 energy.s_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
86 energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
87 energy.sref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
88 energy.sref_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
89 energy.sref_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
90 energy.sref_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
91 energy.spup_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
92 energy.spup_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
93 energy.spup_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
94 energy.spup_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
95 energy.pup_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
96 energy.pup_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
97 energy.total_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
99 energy.act_energy = 0.0;
100 energy.pre_energy = 0.0;
101 energy.read_energy = 0.0;
102 energy.write_energy = 0.0;
103 energy.ref_energy = 0.0;
104 energy.act_stdby_energy = 0.0;
105 energy.pre_stdby_energy = 0.0;
106 energy.idle_energy_act = 0.0;
107 energy.idle_energy_pre = 0.0;
108 energy.window_energy = 0.0;
109 energy.f_act_pd_energy = 0.0;
110 energy.f_pre_pd_energy = 0.0;
111 energy.s_act_pd_energy = 0.0;
112 energy.s_pre_pd_energy = 0.0;
113 energy.sref_energy = 0.0;
114 energy.sref_ref_energy = 0.0;
115 energy.sref_ref_act_energy = 0.0;
116 energy.sref_ref_pre_energy = 0.0;
117 energy.spup_energy = 0.0;
118 energy.spup_ref_energy = 0.0;
119 energy.spup_ref_act_energy = 0.0;
120 energy.spup_ref_pre_energy = 0.0;
121 energy.pup_act_energy = 0.0;
122 energy.pup_pre_energy = 0.0;
127 energy.read_io_energy = 0.0;
128 energy.write_term_energy = 0.0;
129 energy.read_oterm_energy = 0.0;
130 energy.write_oterm_energy = 0.0;
131 energy.io_term_energy = 0.0;
149 energy.read_io_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength,
155 energy.write_term_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength,
163 energy.read_oterm_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength,
170 energy.write_oterm_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength,
176 // Sum of all IO and termination energy
177 energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
178 + energy.read_oterm_energy + energy.write_oterm_energy;
189 energy.act_energy = vdd0Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd0 - mps.idd3n);
190 energy.pre_energy = vdd0Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
191 energy.read_energy = vdd0Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r - mps.idd3n);
192 energy.write_energy = vdd0Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w - mps.idd3n);
193 energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n);
194 energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n);
195 energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n);
216 //Distribution of energy componets to each banks
218 energy.act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofactsBanks[i] * t.RAS, mps.idd0 - ione);
219 energy.pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofpresBanks[i] * (t.RP), mps.idd0 - ione);
220 energy.read_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofreadsBanks[i] * burstCc, mps.idd4r - mps.idd3n);
221 energy.write_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofwritesBanks[i] * burstCc, mps.idd4w - mps.idd3n);
222 energy.ref_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC, mps.idd5 - mps.idd3n) / static_cast<double>(nbrofBanks);
223 energy.refb_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefbBanks[i] * tRefBlocal, idd5Blocal);
224 energy.pre_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n) / static_cast<double>(nbrofBanks);
225 energy.act_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.actcyclesBanks[i], (mps.idd3n - iddrho) / static_cast<double>(nbrofBanks))
227 energy.idle_energy_act_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n) / static_cast<double>(nbrofBanks);
228 energy.idle_energy_pre_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n) / static_cast<double>(nbrofBanks);
229 energy.f_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1) / static_cast<double>(nbrofBanks);
230 energy.f_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1) / static_cast<double>(nbrofBanks);
231 energy.s_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0) / static_cast<double>(nbrofBanks);
232 energy.s_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0) / static_cast<double>(nbrofBanks);
234 energy.sref_energy_banks[i] = engy_sref_banks(mps.idd6, mps.idd3n,
240 energy.sref_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0) / static_cast<double>(nbrofBanks);
241 energy.sref_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0) / static_cast<double>(nbrofBanks);
242 energy.sref_ref_energy_banks[i] = energy.sref_ref_act_energy_banks[i] + energy.sref_ref_pre_energy_banks[i] ;//
244 energy.spup_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
245 energy.spup_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks);//
246 energy.spup_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
247 energy.spup_ref_energy_banks[i] = ( energy.spup_ref_act_energy + energy.spup_ref_pre_energy ) / static_cast<double>(nbrofBanks);
248 energy.pup_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks);
249 energy.pup_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
252 // Idle energy in the active standby clock cycles
253 energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n);
254 // Idle energy in the precharge standby clock cycles
255 energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n);
256 // fast-exit active power-down cycles energy
257 energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1);
258 // fast-exit precharged power-down cycles energy
259 energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1);
260 // slow-exit active power-down cycles energy
261 energy.s_act_pd_energy = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0);
262 // slow-exit precharged power-down cycles energy
263 energy.s_pre_pd_energy = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0);
265 // self-refresh cycles energy including a refresh per self-refresh entry
266 energy.sref_energy = engy_sref(mps.idd6, mps.idd3n,
272 // background energy during active auto-refresh cycles in self-refresh
273 energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0);
274 // background energy during precharged auto-refresh cycles in self-refresh
275 energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0);
276 // background energy during active auto-refresh cycles in self-refresh exit
277 energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n);
278 // background energy during precharged auto-refresh cycles in self-refresh exit
279 energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n);
280 // self-refresh power-up cycles energy -- included
281 energy.spup_energy = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n);
282 // active power-up cycles energy - same as active standby -- included
283 energy.pup_act_energy = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n);
284 // precharged power-up cycles energy - same as precharged standby -- included
285 energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n);
292 energy.act_energy += vdd2Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd02 - mps.idd3n2);
293 energy.pre_energy += vdd2Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
294 energy.read_energy += vdd2Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r2 - mps.idd3n2);
295 energy.write_energy += vdd2Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w2 - mps.idd3n2);
296 energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2);
297 energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2);
298 energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2);
300 // Idle energy in the active standby clock cycles
301 energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2);
302 // Idle energy in the precharge standby clock cycles
303 energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2);
304 // fast-exit active power-down cycles energy
305 energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12);
306 // fast-exit precharged power-down cycles energy
307 energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12);
308 // slow-exit active power-down cycles energy
309 energy.s_act_pd_energy += vdd2Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p02);
310 // slow-exit precharged power-down cycles energy
311 energy.s_pre_pd_energy += vdd2Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p02);
313 energy.sref_energy += engy_sref(mps.idd62, mps.idd3n2,
319 // background energy during active auto-refresh cycles in self-refresh
320 energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p02);
321 // background energy during precharged auto-refresh cycles in self-refresh
322 energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p02);
323 // background energy during active auto-refresh cycles in self-refresh exit
324 energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n2);
325 // background energy during precharged auto-refresh cycles in self-refresh exit
326 energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n2);
327 // self-refresh power-up cycles energy -- included
328 energy.spup_energy += vdd2Domain.calcTivEnergy(c.spup_cycles, mps.idd2n2);
329 // active power-up cycles energy - same as active standby -- included
330 energy.pup_act_energy += vdd2Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n2);
331 // precharged power-up cycles energy - same as precharged standby -- included
332 energy.pup_pre_energy += vdd2Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n2);
335 // auto-refresh energy during self-refresh cycles
336 energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;
338 // auto-refresh energy during self-refresh exit cycles
339 energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;
341 // adding all energy components for the active rank and all background and idle
342 // energy components for both ranks (in a dual-rank system)
345 // Calculate total energy per bank.
347 energy.total_energy_banks[i] = energy.act_energy_banks[i] + energy.pre_energy_banks[i] + energy.read_energy_banks[i]
348 + energy.ref_energy_banks[i] + energy.write_energy_banks[i] + energy.refb_energy_banks[i]
349 + static_cast<double>(memArchSpec.nbrOfRanks) * energy.act_stdby_energy_banks[i]
350 + energy.pre_stdby_energy_banks[i] + energy.f_pre_pd_energy_banks[i] + energy.s_act_pd_energy_banks[i]
351 + energy.s_pre_pd_energy_banks[i]+ energy.sref_ref_energy_banks[i] + energy.spup_ref_energy_banks[i];
353 // Calculate total energy for all banks.
354 energy.window_energy = sum(energy.total_energy_banks) + energy.io_term_energy;
357 energy.window_energy = energy.act_energy + energy.pre_energy + energy.read_energy + energy.write_energy
358 + energy.ref_energy + energy.io_term_energy + sum(energy.refb_energy_banks)
359 + static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy
360 + energy.pre_stdby_energy + energy.sref_energy + energy.f_act_pd_energy
361 + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy
362 + energy.sref_ref_energy + energy.spup_ref_energy);
365 power.window_average_power = energy.window_energy / (static_cast<double>(window_cycles) * t.clkPeriod);
369 energy.total_energy += energy.window_energy;
372 power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
441 << endl << " ACT Cmd Energy: " << energy.act_energy_banks[i] << eUnit
442 << endl << " PRE Cmd Energy: " << energy.pre_energy_banks[i] << eUnit
443 << endl << " RD Cmd Energy: " << energy.read_energy_banks[i] << eUnit
444 << endl << " WR Cmd Energy: " << energy.write_energy_banks[i] << eUnit
445 << endl << " Auto-Refresh Energy: " << energy.ref_energy_banks[i] << eUnit
446 << endl << " Bankwise-Refresh Energy: " << energy.refb_energy_banks[i] << eUnit
447 << endl << " ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy_banks[i] << eUnit
448 << endl << " PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy_banks[i] << eUnit
449 << endl << " Active Idle Energy: "<< nRanksDouble * energy.idle_energy_act_banks[i] << eUnit
450 << endl << " Precharge Idle Energy: "<< nRanksDouble * energy.idle_energy_pre_banks[i] << eUnit
451 << endl << " Fast-Exit Active Power-Down Energy: "<< nRanksDouble * energy.f_act_pd_energy_banks[i] << eUnit
452 << endl << " Fast-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.f_pre_pd_energy_banks[i] << eUnit
453 << endl << " Slow-Exit Active Power-Down Energy: "<< nRanksDouble * energy.s_act_pd_energy_banks[i] << eUnit
454 << endl << " Slow-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.s_pre_pd_energy_banks[i] << eUnit
455 << endl << " Self-Refresh Energy: "<< nRanksDouble * energy.sref_energy_banks[i] << eUnit
456 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: "<< nRanksDouble * energy.sref_ref_act_energy_banks[i] << eUnit
457 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy_banks[i] << eUnit
458 << endl << " Self-Refresh Power-Up Energy: "<< nRanksDouble * energy.spup_energy_banks[i] << eUnit
459 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_act_energy_banks[i] << eUnit
460 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_pre_energy_banks[i] << eUnit
461 << endl << " Active Power-Up Energy: "<< nRanksDouble * energy.pup_act_energy_banks[i] << eUnit
462 << endl << " Precharged Power-Up Energy: "<< nRanksDouble * energy.pup_pre_energy_banks[i] << eUnit
463 << endl << " Total Energy: "<< energy.total_energy_banks[i] << eUnit
471 << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit
472 << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit
473 << endl << "RD Cmd Energy: " << energy.read_energy << eUnit
474 << endl << "WR Cmd Energy: " << energy.write_energy << eUnit;
477 cout << endl << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl;
480 cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl;
484 cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit
485 << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl;
489 cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit
490 << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit
491 << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit
492 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit
493 << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit
494 << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit
495 << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit
496 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit
497 << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit
498 << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit
499 << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit
500 << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit
501 << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit
502 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit
503 << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit
504 << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit
505 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit
506 << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit
507 << endl << "Bankwise-Refresh Energy: " << sum(energy.refb_energy_banks) << eUnit
508 << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit
510 << endl << "Total Trace Energy: " << energy.total_energy << eUnit
518 // Self-refresh active energy estimation (not including background energy)
532 // Self-refresh active energy estimation per banks
540 // Bankwise Self-refresh energy
542 // Dynamic componenents for PASR energy varying based on PASR mode
554 // Distribute the sref energy to the active banks
564 //When PASR is not active total all the banks are in Self-Refresh. Thus total Self-Refresh energy is distributed across all banks
605 // time (t) * current (I) * voltage (V) energy calculation